Supporting Information

Shielding Effect and Compensation Defect Study on $Na_3Sc_2(PO_4)_y:Eu^{2+,3+}$ (y = 2.6-3.0) Phosphor by Anion-Group-Induced Phase Transition

Yi-Ting Tsai^a, Yu Shu Huang^a, Natalia Majewska^b, Sebastian Mahlik^b, Andi Magattang Gafur Muchlis^a, Yu-Kai Huang^a, Yu Lun Huang^a, Bi-Hsuan Lin^c, Chaochin Su^{a,d}, and Chun Che Lin^{a,d,*}

- a. Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
- b. Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
- c. National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- d. Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan

Symbol	y value	x axis	y axis
Ι	2.6	0.6347	0.3648
II	2.7	0.6390	0.3606
III	2.8	0.1850	0.1257
IV	2.9	0.1448	0.0649
V	3.0	0.1490	0.0470

Table S1. The different coordination of $NS(PO)_y: 0.13Eu^{2+}$ (y = 2.6–3.0) in CIE chromaticitydiagram.

Figure S1. (a) The integrated area of emission spectra under different excitation wavelengths. (b) The emission spectra under excitation wavelength at 392 nm.

Figure S2. The Eu^{2+} and Eu^{3+} ratios were calculated by XRF mapping of the $NS(PO_4)_v$:0.13 Eu^{2+} phosphor with y values from 2.6 to 3.0.

Figure S3. (a-e) The temperature-dependent PL spectra of $NS(PO_4)_y: 0.13Eu^{2+}$, y = 2.6-3.0 which measured from 25 to 300°C. (f) The comparative relative integrated area (%) of the temperature-dependent PL spectra of $NS(PO_4)_y: 0.13Eu^{2+}$ with different y values.

Figure S4. The correlation between the heating and cooling process of the $NS(PO_4)_y:0.13Eu^{2+}$ phosphor with y values from (a) 2.6 to (e) 3.0 were interpreted by the relative-integrated area series.

Figure S5. The pressure-dependent emission spectra (a), decay profiles (b), and decay times (c) of Eu^{3+} ion upon excitation at 250 nm of NS(PO₄)_{2.75}:Eu. Emission spectra and decay profiles were integrated in 10 ms range.