Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Sc Dopant Induced Tailoring of Persistent Luminescence in Na₃YSi₃O₉:Eu²⁺ For Information Recording

Kang Zhang¹, Bo Wang^{1*}, Tianpeng Liu¹, Hongxiang An¹, Shuwei Deng¹, Zhiyu Hu¹,

Youchao Kong^{2*}, and Qingguang Zeng^{1*}

¹School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China ²Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, China

Corresponding Authors:

Bo Wang: wangbo312@mails.ucas.ac.cn

Youchao Kong: <u>yb87816@connect.um.edu.mo;</u>

Qingguang Zeng: zengqg@mail.ustc.edu.cn

2. Experimental section:

2.1 Sample preparation

All phosphors were synthesized using a traditional solid-state method. The raw materials were Na₂CO₃ (99.99%), Y₂O₃ (A.R.), Sc₂O₃ (99.99%), SiO₂ (A.R.), and Eu₂O₃ (99.99%), which were used directly without any further treatment. The stoichiometric starting materials were thoroughly homogenized, the mixture was transferred into an alumina crucible and then loaded into a muffle furnace. Then the mixed samples were sintered at 1250 °C for 5 h under 95% N₂+5% H₂ reductive atmosphere. The obtained samples were cooled to room temperature and then ground again in an agate mortar.

2.2 Characterization

The powder X-ray diffraction (PXRD) patterns of the as-obtained samples were collected on a X' Pert PRO diffractometer (Cu K α radiation, $\lambda = 1.5406$ Å) at 298 K. The microstructure was analyzed using a scanning electron microscope (SEM, JSM-6700F) and transmission electron microscope (FE-TEM, JEM-2100F, JEOL). The X-ray photoelectron spectroscopy (XPS, Thermo fisher Scientific K-Alpha) was conducted to identify the chemical states of the elements in the sample. A FLS-980 fluorescence spectrophotometer (Xe 900, 450 W arc lamps) was employed to obtain the photoluminescence (PL), photoluminescence excitation (PLE), and decay curve spectra. An absolute photoluminescence quantum yield measurement system (Hamamatsu, Quantaurus-QY plus C13534-31) was adopted to test the quantum efficiency. A LTTL-3DS measurement was used to record the 3D TL glow curves at a

heating rate of 1 K•s⁻¹.

2.3 Computational methods:

Utilizing density functional theory (DFT) as implemented in the Vienna *ab-initio* simulation package code,¹ we investigate the electronic structures of title compound. We used projector augmented wave (PAW) method² for the ionic cores and the generalized gradient approximation (GGA) for the exchange-correlation potential, in which the Perdew-Burke-Ernzerhof (PBE) type³ exchange-correlation was adopted. The reciprocal space was sampled with 0.03 Å⁻¹ spacing in the Monkhorst-Pack scheme for structure optimization, while denser k-point grids with 0.01 Å⁻¹ spacing were adopted for properties calculation. We used a mesh cutoff energy of 400 eV to determine the self-consistent charge density. All geometries are relaxed until the Hellmann-Feynman force on atoms is less than 0.01 eV/Å and the total energy change is less than 1.0×10^{-5} eV. The calculation models were built from the crystal structure.

[1] A. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

[2] B. G. Kresse, J. Furthmüller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Com. Mater. Sci. 1996, 6, 15-50.

[3] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

Figure S1. (a) The XRD patterns of $Na_3YSi_3O_9:xEu^{2+}$ (x = 0.01, 0.02, 0.03 and 0.04). (b) The PL spectra of $Na_3YSi_3O_9:xEu^{2+}$ (x = 0.01, 0.02, 0.03 and 0.04) samples. (c) (d) SEM image and EDS of $Na_3YSi_3O_9:0.02Eu^{2+}$ microcrystal particles and elemental mapping images of Na, Y, Si, O, and Eu.

Figure S2. The UV-Vis spectra of $Na_3YSi_3O_9:xEu^{2+}$ sample.

Figure S3(a). PL spectra and the PL deconvolution of Na₃YSi₃O₉:0.02Eu²⁺. (b) Decay curve and fitting line of Na₃YSi₃O₉:0.02Eu²⁺.

Figure S4. (a) The XRD patterns of $Na_3Y_{1-y}Sc_ySi_3O_9:0.02Eu^{2+}$ samples. (b-d) Observed and calculated XRD patterns of $Na_3Y_{0.8}Sc_{0.2}Si_3O_9:Eu^{2+}$, $Na_3Y_{0.4}Sc_{0.6}Si_3O_9:Eu^{2+}$ and $Na_3Y_{0.2}Sc_{0.8}Si_3O_9:Eu^{2+}$ (e) The EDS spectra of $Na_3Y_{1-y}Sc_ySi_3O_9:0.02Eu^{2+}$ samples by conducting XRF.

Figure S5. The UV-Vis absorption spectra of $Na_3(Y,Sc)Si_3O_9$: Eu²⁺ samples.

Figure S6. The PLE spectra of $Na_3(Y_ySc_{1-y})Si_3O_9$:Eu²⁺ phosphors with y = 0-1.

Figure S7. The CIE chromaticity coordinates diagram for $Na_3(Y,Sc)Si_3O_9$:Eu²⁺.

Figure S8. The decay curves of $Na_3Y_{1\mathchar`s}Sc_ySi_3O_9{:}0.02Eu^{2\mathchar`s}$ samples.

Figure S9(a)(b). The FTIR and Raman spectra of $Na_3Y_{1-y}Sc_ySi_3O_9:0.02Eu^{2+}$ (y = 0-1) samples.

Figure S10. Normalized absorption spectra of $Na_3Y_{1-y}Sc_ySi_3O_9$ (y = 0-1) host.

Figure S11. (a) The EPR spectra of $Na_3YSi_3O_9:Eu^{2+}$, $Na_3Y_{0.5}Sc_{0.5}Si_3O_9:Eu^{2+}$ and $Na_3ScSi_3O_9:Eu^{2+}$ phosphors. (b) The O-XPS spectra of $Na_3(Y_{1-y}Sc_y)Si_3O_9:Eu^{2+}$ (y = 0, 0.3, 0.5, 0.7, 1) phosphors.

Figure S12. The long afterglow decay curves of $Na_3(Y_{1-y}Sc_y)Si_3O_9$: Eu²⁺ (y = 0-1) phosphors.

Figure S13. PL brightness images of $N_3Y_{0.5}Sc_{0.5}Si_3O_9$:Eu²⁺ under HCl solutions.

Figure S14. The 2D TL spectra of $Na_3(Y_{1-y}Sc_y)Si_3O_9$:Eu²⁺ (y = 0-1) phosphors.

Figure S15. Excitation duration dependent TL glow curves at a heating rate of 1K/s.

Figure S16. (a) The magnified image of core show specific detail. (b) The digital photograph. (c) the grayscale photos. (d) the gray value over the LFPs.

Atom		••	-	Average Na-O	Coordination
Atom	Х	У	Z	(Å)	Number
Na1	0.1509	0.3694	0.3881	2.45	5
Na2	0.1190	0.1680	0.6301	2.31	8
Na3	0.3935	0.0936	0.6363	2.50	5
Na4	0.4438	0.4468	0.9972	2.19	3
Na5	0.1619	0.1227	0.8977	2.49	7
Na6	0.1205	0.4014	0.8488	2.42	6
Na7	0.1524	0.1242	0.3537	2.46	5
Na8	0.0036	0.009	0.4963	2.36	4
Na9	0.0978	0.3449	0.1278	2.37	5
Na10	0.2944	0.2467	0.2020	2.48	4
Na11	0.4119	0.1261	0.3828	2.68	5
Na12	0.2889	0.2913	0.7493	2.61	6

Table S1. Fractional atomic coordinates, bond lengths (Å) and coordination number.

Ratio of Y:Sc	R _p (%)	$R_{wp}(\%)$	$R_{exp}(\%)$	χ^2	
10:00	9.5	10.3	6.8	1.51	
8:2	12.3	11.9	8.9	1.48	
5:5	10.4	12.8	7.7	1.66	
4:6	13.9	13.2	8.6	1.53	
2:8	11.7	10.6	7.9	1.34	
0:10	13.2	14.1	8.3	1.71	
Datio of V.So	Average band	length of	Average band length of		
Katio of 1.5c	Na8-O (Å)	Na7-O (Å)		
10:0	2.31		2.49		
8:2	2.29		2.45		
6:4	2.25		2.41		
5:5	2.23		2.39		
4:6	2.19		2.36		
2:8	2.15		2.31		
0:10	2.11		2.95		

Table S2. The Rietveld refinement and average bond length of Na-O.

Sample	τ_1	τ_2	τ_3
Y:Sc=10:0	1.9	10.1	128.3
Y:Sc=9:1	1.4	15.9	137.2
Y:Sc=8:2	1.8	24.4	259.7
Y:Sc=7:3	3.1	29.4	323.4
Y:Sc=6:4	3.4	34.3	446.1
Y:Sc=5:5	4.2	60.8	531.0
Y:Sc=4:6	3.4	33.3	411.4
Y:Sc=3:7	2.6	30.9	407.1
Y:Sc=2:8	2.2	28.4	290.1
Y:Sc=1:9	2.1	21.1	226.6
Y:Sc=0:10	1.9	18.4	150.7

Table S3. The afterglow decay times (τ) of Na₃(Y,Sc)Si₃O₉:Eu²⁺.