Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electric-field induced magnetic-anisotropy transformation to achieve spontaneous valley polarization

San-Dong Guo¹, Xiao-Shu Guo¹, Guang-Zhao Wang², Kai Cheng¹, and Yee-Sin Ang³ ¹School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China ²Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China and ³Science, Mathematics and Technology (SMT), Singapore University of Tachaclasu, and Dasim (SUTD). Scienceric Parada Singapore University of

Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore

FIG. 1. (Color online) For VSi_2P_4 monolayer, the energy difference between AFM and FM (per chemical unit) as a function of E.

FIG. 2. (Color online)For VSi_2P4 monolayer, the local magnetic moment of V as a function of E.

FIG. 3. (Color online) For VSi_2P_4 monolayer with out-of-plane MA, the V-*d*-orbital characters energy band structures without electric field.