Efficient pure near-infrared organic light-emitting diodes based on

tris(2,4,6-trichlorophenyl) methyl radical derivatives

Junshuai Ding, Shengzhi Dong, Ming Zhang, Feng Li*

State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China

*E-mail: <u>lifeng01@jlu.edu.cn</u>

Contents

- 1. Synthesis
- 2. EPR spectra of TTM-3PDMAC and TTM-PDMAC
- 3. Electrochemical properties
- 4. Theoretical Calculations
- 5. Electroluminescence Performances
- 6. Summary of device performances of near infrared (NIR) OLED published to date
- 7. References

General information

All reagents and solvents required for synthesis and characterization are purchased from commercial suppliers and used directly without any treatment. A Bruker Avance-III 500 NMR spectrometer was used for the ¹H collection in CDCl₃ and CH₂Cl₂ solvent with tetramethylsilane as the internal standard. Mass spectra of all compounds were recorded on Thermo Fisher ITQ1100 GC-MS mass detector. A shimadzu UV-2550 spectrophotometer was applied to record the ultraviolet (UV)-visible spectra. Fluorescence spectra were recorded using a RF-5301 PC spectrophotometer and QE pro. All of PLQEs are determined with a calibrated integrating sphere system and using QE pro of Ocean Insight as fluorescence spectrometer. The electrochemical oxidation and reduction potentials were recorded using an electrochemical analyzer (CHI660C, CH Instruments, USA). The fluorescence decay spectra were recorded on an Edinburgh fluorescence spectrometer (FLS980), and the lifetime of the excited states was measured by the time-correlated single photon counting method under the excitation of a laser (375 nm). Thermal gravimetric analysis (TGA) were characterized by a TA INSTRUMENTS Q500 TGA analyzer. Ready-made indium tin oxide (ITO) glass substrates were purchased and cleaned. After dried with N2, they were treated with UV irradiation for 20 min and next transferred to a vacuum deposition system with the pressure of $4-6 \times 10^{-6}$ mbar. The MoO₃ layer was deposited at a rate of 0.3 Å s⁻¹. All the organic layers were deposited at 0.4-0.6 Å s⁻¹. The evaporation rate of cathode LiF and Al metal layer were 0.1 Å s⁻¹ and 0.8-1.4 Å s⁻¹ respectively. The current-voltage characteristics were measured using a Keithley 2400 programmable electrometer. The EL spectra and EQEs were measured using QE pro spectroradiometer of Ocean Insight together with a calibrated integrating sphere at room temperature in glove box.

1. Synthesis

Scheme 1. Synthetic routes and chemical structures of TTM-3PDMAC and TTM-PDMAC.

The HTTM¹ and 3-PDMACB² and PDMACB³ were prepared as reported.

(1) Synthesis of HTTM-3PDMAC

HTTM (1.0 g, 1.80 mmol) and the pinacol borane of 3-PDMAC (0.67 g, 1.80 mmol) was dissolved in a mixed solvent of toluene (12 ml), K_3PO_4 aqueous solution (8 ml, 2 mol / L) and ethanol (4 ml), and catalyst Pd(PPh₃)₄ (0.10 g, 0.09 mmol) was added under argon atmosphere. The mixture was stirred at 95 °C for 48 h under argon atmosphere. After the reaction mixture cooling to room temperature, the solution was extracted with dichloromethane, organic layer was collected and dried. The solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 10:1 v/v). HTTM-3PDMAC was obtained as a white solid. GC-MS (m/z): calculated for C₄₀H₂₅Cl₈N,

802.94; found, 803.37; ¹H NMR (500 MHz, CDCl₃) 87.68 – 7.62 (m, 3H), 7.56 – 7.46 (m, 3H), 7.40 – 7.33 (m, 5H), 7.24 (t, J = 2.3 Hz, 2H), 7.19 (dd, J = 8.6, 2.0 Hz, 1H), 7.05 – 6.95 (m, 2H), 6.78 (s, 1H), 6.34 (d, J = 8.6 Hz, 1H), 6.31 (dd, J = 7.9, 1.0 Hz, 1H), 1.78 (s, 3H), 1.77 (s, 3H).

Figure S1. ¹H NMR spectrum of HTTM-3PDMAC in CDCl_{3.}

Figure S2. Mass Spectrum of HTTM-3PDMAC.

(2) Synthesis of TTM-3PDMAC

Under argon atmosphere and in the dark, the HTTM-3PDMAC (1.00 equiv) was dissolved in dry THF (40 ml). Then KOtBu (4.00 equiv) was added, the solution become claret-colored immediately. The solution was stirred for 5 h in the dark at room temperature, and then p-Chloranil (5 equiv) was added. The solution was stirred for further 1 h. After the reaction finished, the solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 10:1v/v). The crude product was recrystallized twice from dichloromethane and methanol and a green solid was obtained. GC-MS (m/z): calculated for C₄₀H₂₅Cl₈N, 801.94; found, 802.46;

Figure S3. Mass Spectrum of TTM-3PDMAC.

(3) Synthesis of HTTM-PDMAC

HTTM (1.0 g, 1.80 mmol) and the pinacol borane of PDMAC (0.67 g, 1.80 mmol) was dissolved in a mixed solvent of toluene (12 ml), K₃PO₄ aqueous solution (8 ml, 2 M) and ethanol (4 ml), and catalyst Pd(PPh₃)₄ (0.10 g, 0.09 mmol) was added under argon atmosphere. The mixture was stirred at 95 °C for 48 h under argon atmosphere and in the dark. After the reaction mixture cooling to room temperature, the solution was extracted with dichloromethane, organic layer was collected and dried. The solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 10:1 v/v). HTTM-PDMAC was obtained as a white solid. GC-MS (m/z): calculated for C₄₀H₂₅Cl₈N, 802.94; found, 803.37; ¹H NMR (500 MHz, CD₂Cl₂) δ 7.91 (d, J = 7.9 Hz, 2H), 7.77 (d, J = 1.8 Hz, 1H), 7.64 (d, J = 1.8 Hz, 1H), 7.54 – 7.44 (m, 5H), 7.34 (d, J = 2.0 Hz, 1H), 7.08 – 6.92

(m, 4H), 6.86 (s, 1H), 6.33 (d, J = 6.0 Hz, 2H), 1.72 (s, 6H).

Figure S4. ¹H NMR spectrum of HTTM-PDMAC in CD₂Cl₂.

Figure S5. Mass Spectrum of HTTM-PDMAC.

(4) Synthesis of TTM-PDMAC

Under argon atmosphere and in the dark, the TTM-PDMAC (1.00 equiv) was dissolved in dry THF (40 ml). Then KOtBu (10.00 equiv) was added, the solution become claretcolored immediately. The solution was stirred for 5 h in the dark at room temperature, and then p-Chloranil (5 equiv) was added. The solution was stirred for further 1 h. After the reaction finished, the solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 10:1v/v). The crude product was recrystallized twice from dichloromethane and methanol and a gray solid was obtained. GC-MS (m/z): calculated for C₄₀H₂₄Cl₈N, 801.94; found, 802.46.

Figure S6. Mass Spectrum of TTM-PDMAC.

2. EPR spectra of TTM-3PDMAC and TTM-PDMAC

Figure S7. EPR spectra of TTM-3PDMAC (red) and TTM-PDMAC (black).

3. Electrochemical properties

Voltage (V versus Fc/Fc⁺)

Figure S8. cyclic voltammetry measurements of TTM-3PDMAC (a) and TTM-PDMAC (b); Repeated cyclic voltammetry measurements (20 cycles) of TTM-3PDMAC and TTM-PDMAC (c).

4. Quantum chemical calculations

Table S1. Cartesian coordinates of the optimized ground state geometries by DFT calculation (UB3LYP/6-31G(d, p))

TTM-3PDMAC:

Center	Atomic		Atomic	Coordinate	s (Angstroms)	
Number	Numbe	er	Туре	X Y	Z	
1	6	0	0.012310	1.220087	-0.080889	
2	6	0	-1.373197	1.175807	0.073692	
3	6	0	-1.960242	0.146539	0.809655	
4	6	0	-1.161769	-0.838416	1.390867	
5	6	0	0.223709	-0.794198	1.236214	
6	6	0	0.810783	0.235132	0.500324	
7	6	0	-3.447244	0.099023	0.975713	
8	6	0	-4.067126	1.259658	0.261791	
9	6	0	-3.972421	-1.178787	0.399174	
10	17	0	-2.357233	2.389624	-0.642748	
11	17	0	-1.885281	-2.106856	2.297813	
12	6	0	-4.265085	2.466246	0.932944	
13	6	0	-4.842788	3.547636	0.267731	
14	6	0	-5.222370	3.422404	-1.068583	
15	6	0	-5.024331	2.215870	-1.739760	
16	6	0	-4.446707	1.134426	-1.074524	
17	6	0	-4.959891	-1.895065	1.075443	
18	6	0	-5.449127	-3.085755	0.538268	
19	6	0	-4.950963	-3.560009	-0.675164	
20	6	0	-3.963579	-2.843701	-1.351477	
21	6	0	-3.474257	-1.653041	-0.814258	
22	17	0	-3.797129	2.620592	2.579806	
23	17	0	-4.202676	-0.352628	-1.901614	
24	17	0	-2.257296	-0.770210	-1.647670	
25	17	0	-5.573923	-1.310475	2.570830	
26	17	0	-5.553942	-5.027376	-1.337139	
27	17	0	-5.934286	4.755124	-1.888337	
28	6	0	2.138861	0.277615	0.352095	
29	6	0	2.863023	-0.905169	0.207189	
30	6	0	4.256012	-0.867155	0.042447	
31	6	0	4.919569	0.369841	0.009810	
32	6	0	4.186449	1.548530	0.180542	
33	6	0	2.800358	1.503530	0.342282	
34	6	0	5.034779	-2.156714	-0.094926	
35	6	0	6.521720	-2.002042	-0.326363	

36	6	0	7.108158	-0.726316	-0.346457
37	7	0	6.317920	0.407234	-0.102219
38	6	0	7.321857	-3.138524	-0.518701
39	6	0	8.696111	-3.006767	-0.715361
40	6	0	9.280767	-1.742421	-0.712737
41	6	0	8.490763	-0.607466	-0.520244
42	6	0	6.898426	1.525194	0.024014
43	6	0	6.767982	2.249393	1.210153
44	6	0	8.306732	3.264903	-0.880337
45	6	0	7.666734	2.032236	-1.019911
46	6	0	4.455947	-2.929522	-1.272742
47	6	0	4.893888	-2.872442	1.242016
48	1	0	0.475293	2.031813	-0.661187
49	1	0	0.853380	-1.571016	1.694546
50	1	0	-4.999017	4.499191	0.797009
51	1	0	-5.323644	2.117159	-2.793642
52	1	0	-6.227815	-3.650728	1.071606
53	1	0	-3.570770	-3.217714	-2.308459
54	1	0	2.339800	-1.872648	0.222095
55	1	0	4.705690	2.518241	0.187454
56	1	0	2.230347	2.436669	0.462031
57	1	0	6.862898	-4.138193	-0.514336
58	1	0	9.317910	-3.900465	-0.872423
59	1	0	10.365535	-1.638137	-0.862416
60	1	0	8.959304	0.387643	-0.505162
61	1	0	6.159188	1.843047	2.031281
62	1	0	8.912491	3.660039	-1.709146
63	1	0	7.769600	1.461717	-1.954751
64	1	0	4.597667	-2.342731	-2.207815
65	1	0	4.978284	-3.907852	-1.366558
66	1	0	3.369417	-3.102659	-1.104677
67	1	0	4.380329	-3.847932	1.088900
68	1	0	5.903527	-3.049370	1.675714
69	1	0	4.295142	-2.243385	1.938118
70	6	0	8.185968	4.006303	0.306316
71	1	0	8.681479	4.949922	0.400935
72	6	0	7.405328	3.491079	1.366963
73	1	0	7.297727	4.036581	2.281156

TTM-PDMAC:

Center	Atomic	Atomic	Coor	dinates (A	Angstron	ns)		
Number	Number	Туре	Х	Y	Ζ			

1	6	0	4.247801	1.135347	0.516725	
2	6	0	3.667047	-0.160854	0.989585	
3	6	0	4.241756	-1.286491	0.187301	
4	6	0	2.180211	-0.134611	0.817428	
5	6	0	3.419779	-2.030204	-0.659302	
6	6	0	3.955291	-3.079114	-1.406743	
7	6	0	5.312725	-3.384153	-1.307623	
8	6	0	6.134715	-2.640397	-0.461111	
9	6	0	5.599190	-1.591530	0.286419	
10	6	0	4.638850	1.279979	-0.814310	
11	6	0	5.180090	2.487721	-1.254844	
12	6	0	5.330126	3.550757	-0.364368	
13	6	0	4.938998	3.406168	0.966623	
14	6	0	4.397837	2.198382	1.407199	
15	6	0	1.559851	0.994684	0.283259	
16	6	0	0.174441	1.019146	0.122975	
17	6	0	-0.590481	-0.085703	0.496747	
18	6	0	0.029868	-1.215021	1.030819	
19	6	0	1.415289	-1.239460	1.191200	
20	17	0	2.179910	-2.631212	1.849488	
21	17	0	4.453787	-0.030105	-1.911759	
22	17	0	2.502607	2.356250	-0.177514	
23	17	0	6.612160	-0.674893	1.329793	
24	17	0	5.972633	-4.676795	-2.228797	
25	17	0	5.997113	5.039139	-0.907330	
26	6	0	-1.918413	-0.062226	0.343073	
27	17	0	3.915846	2.020069	3.047580	
28	17	0	1.746879	-1.654142	-0.781544	
29	6	0	-2.566665	-1.125605	-0.285006	
30	6	0	-3.952059	-1.101020	-0.445420	
31	6	0	-4.689096	-0.013147	0.022349	
32	6	0	-4.040873	1.050174	0.650504	
33	6	0	-2.655449	1.025648	0.810843	
34	7	0	-5.946499	0.009120	-0.123242	
35	6	0	-6.530968	1.164541	-0.664285	
36	6	0	-7.928997	1.293197	-0.686538	
37	6	0	-8.808442	0.171969	-0.178861	
38	6	0	-8.082405	-1.074879	0.275805	
39	6	0	-6.679062	-1.122901	0.265271	
40	6	0	-5.735106	2.229150	-1.099184	
41	6	0	-6.321263	3.397414	-1.590111	
42	6	0	-7.708513	3.516609	-1.633394	
43	6	0	-8.511425	2.470808	-1.179505	

44	6	0	-8.813269	-2.189507	0.714266	
45	6	0	-8.152378	-3.336901	1.151660	
46	6	0	-6.759980	-3.375840	1.162256	
47	6	0	-6.026524	-2.269700	0.728922	
48	6	0	-9.757942	-0.223026	-1.302230	
49	6	0	-9.509076	0.719792	1.057476	
50	1	0	3.307074	-3.665728	-2.074349	
51	1	0	7.205243	-2.880953	-0.383007	
52	1	0	5.488591	2.601806	-2.304516	
53	1	0	5.057285	4.244555	1.668845	
54	1	0	-0.314859	1.909763	-0.298198	
55	1	0	-0.573401	-2.086349	1.325527	
56	1	0	-1.985399	-1.983574	-0.653812	
57	1	0	-4.463335	-1.939572	-0.940826	
58	1	0	-4.622164	1.908071	1.019442	
59	1	0	-2.144170	1.864237	1.306182	
60	1	0	-4.639218	2.145472	-1.054138	
61	1	0	-5.687252	4.224191	-1.942915	
62	1	0	-8.170157	4.434925	-2.025287	
63	1	0	-9.606623	2.569432	-1.208028	
64	1	0	-9.912820	-2.158089	0.712968	
65	1	0	-8.730083	-4.210468	1.488021	
66	1	0	-6.237994	-4.278633	1.512248	
67	1	0	-4.927202	-2.300429	0.752361	
68	1	0	-9.171672	-0.611563	-2.164840	
69	1	0	-10.452029	-1.013970	-0.939711	
70	1	0	-10.343726	0.667354	-1.622932	
71	1	0	-10.609417	0.723079	0.890125	
72	1	0	-9.269614	0.077329	1.934214	
73	1	0	-9.160387	1.758801	1.251503	

5. Electroluminescence Performances

Figure S9. Energy-level diagram and electroluminescent properties of TTM-3PDMAC and TTM-PDMAC. a) Energy-level diagram of device; b) Materials used in this work; c) EL spectra of TTM-3PDMAC from 5-12V; d) EL spectra of TTM-PDMAC from 4-12V.

6. Summary of device performances of near infrared (NIR) OLED published to date

Table S2. Summary of the device performances of NIR OLED published to date with maximum electroluminescent (EL) wavelength over 800 nm.

$\lambda_{\rm EL}^{\rm max}$ (nm)	EQE (%)	Emitter material	[ref]	$\lambda_{\rm EL}^{\rm max}$ (nm)	EQE (%)	Emitter material	[ref]
800	1.9	metal free emitter	4	800	1	metal complex emitter	5
802	0.43	metal free emitter	6	803	9.58	metal complex emitter	7
804	2.2	metal free emitter	8	811	0.97	metal complex emitter	9
810	0.51	metal free emitter	10	814	1.5	metal complex emitter	11
814	0.5	metal free emitter	12	826	0.49	metal complex emitter	13
823	0.27	metal free emitter	14	847	0.19	metal complex emitter	15
824	0.16	metal free emitter	16	848	2.8	metal complex emitter	17
828	0.41	metal free emitter	10	846	1.5	metal complex emitter	17
830	2.47	metal free emitter	18	855	1	metal complex emitter	19
830	3.1	metal free emitter	this work	890	3.8	metal complex emitter	20
838	0.58	metal free emitter	21	900	3.8	metal complex emitter	22
840	1.12	metal free emitter	23	920	1.9	metal complex emitter	24
840	3.8	metal free emitter	25	1005	0.2	metal complex emitter	22
850	0.14	metal free emitter	14	1060	0.022	metal complex emitter	26
852	0.3	metal free emitter	10	1060	0.3	metal complex emitter	27
864	0.2	metal free emitter	6				

868	0.09	metal free emitter	14		
870	0.02	metal free emitter	14		
883	0.1	metal free emitter	28		
890	0.015	metal free emitter	29		
894	0.23	metal free emitter	10		
895	0.091	metal free emitter	30		
901	1.1	metal free emitter	31		
904	0.019	metal free emitter	32		
905	1.32	metal free emitter	33		
916	0.07	metal free emitter	21		
939	0.006	metal free emitter	30		
960	0.009	metal free emitter	28		
990	0.018	metal free emitter	30		
1010	0.003	metal free emitter	34		
1050	0.05	metal free emitter	35		
1050	0.16	metal free emitter	36		
1050	0.33	metal free emitter	36		
1080	0.73	metal free emitter	36		

7. References

- 1. Q. Peng, A. Obolda, M. Zhang and F. Li, *Angewandte Chemie*, 2015, **127**, 7091-7095.
- T. Y. Sae Youn Lee , Hideaki Komiyama , Jiyoung Lee , and Chihaya Adachi Advanced Materials, 2016, 28, 4019-4024.
- 3. J. Z. Shimin Hu, Xiangyu Zhu, Jingjing Guo, Shuming Chen, Zujin Zhao, and Ben Zhong Tang, ACS applied materials & interfaces, 2019, **11**, 27134-27144.
- 4. M. T. Sharbati, F. Panahi, A. Shourvarzi, S. Khademi and F. Emami, *Optik*, 2013, **124**, 52-54.
- 5. F. Nisic, A. Colombo, C. Dragonetti, D. Roberto, A. Valore, J. M. Malicka, M. Cocchi, G. R. Freeman and J. A. G. Williams, *Journal of Materials Chemistry C*, 2014, **2**, 1791-1800.
- 6. X. Du, J. Qi, Z. Zhang, D. Ma and Z. Y. Wang, *Chemistry of Materials*, 2012, **24**, 2178-2185.
- S. F. Wang, Y. Yuan, Y. C. Wei, W. H. Chan, L. W. Fu, B. K. Su, I. Y. Chen, K. J. Chou, P. T. Chen, H.
 F. Hsu, C. L. Ko, W. Y. Hung, C. S. Lee, P. T. Chou and Y. Chi, *Advanced Functional Materials*, 2020, 30.
- 8. Y. Yu, H. Xing, D. Liu, M. Zhao, H. H. Sung, I. D. Williams, J. W. Y. Lam, G. Xie, Z. Zhao and B. Z. Tang, *Angew Chem Int Ed Engl*, 2022, **61**, e202204279.
- 9. Z. L. Zhu, S. F. Wang, L. W. Fu, J. H. Tan, C. Cao, Y. Yuan, S. M. Yiu, Y. X. Zhang, Y. Chi and C. S. Lee, *Chemistry*, 2022, **28**, e202103202.
- 10. J.-F. Cheng, Z.-H. Pan, K. Zhang, Y. Zhao, C.-K. Wang, L. Ding, M.-K. Fung and J. Fan, *Chemical Engineering Journal*, 2022, **430**, 132744.
- 11. T.-C. Lee, J.-Y. Hung, Y. Chi, Y.-M. Cheng, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang and C.-C. Wu, *Advanced Functional Materials*, 2009, **19**, 2639-2647.
- 12. R. T. F. Yixing Yang, Timothy T. Steckler, Sang Hyun Eom, John R. Reynolds, Kirk S. Schanze, and Jiangeng Xue, *APPLIED PHYSICS LETTERS*, 2008, **93**, 163305.
- 13. Y. Zhang, Z. Chen, X. Wang, J. He, J. Wu, H. Liu, J. Song, J. Qu, W. T. Chan and W. Y. Wong, *Inorg Chem*, 2018, **57**, 14208-14217.
- 14. Z. Z. Gang Qian, Min Luo, Dengbin Yu, Zhiqiang Zhang, Dongge Ma, and Zhi Yuan Wang, *J. Phys. Chem. C*, 2009, **113**, 1589–1595.
- 15. Y. Zhang, Q. Li, M. Cai, J. Xue and J. Qiao, *Journal of Materials Chemistry C*, 2020, **8**, 8484-8492.

- 16. X. Q. Wang, Y. Hu, Y. J. Yu, Q. S. Tian, W. S. Shen, W. Y. Yang, Z. Q. Jiang and L. S. Liao, *J Phys Chem Lett*, 2021, **12**, 6034-6040.
- 17. L. Huang, C. D. Park, T. Fleetham and J. Li, *Applied Physics Letters*, 2016, **109**, 23302.
- 18. L. Tejerina, A. G. Rapidis, M. Rickhaus, P. Murto, Z. Genene, E. Wang, A. Minotto, H. L. Anderson and F. Cacialli, *J Mater Chem C Mater*, 2022, **10**, 5929-5933.
- 19. E. Rossi, A. Colombo, C. Dragonetti, D. Roberto, F. Demartin, M. Cocchi, P. Brulatti, V. Fattori and J. A. Williams, *Chem Commun (Camb)*, 2012, **48**, 3182-3184.
- 20. J. R. Sommer, R. T. Farley, K. R. Graham, Y. Yang, J. R. Reynolds, J. Xue and K. S. Schanze, ACS Appl Mater Interfaces, 2009, **1**, 274-278.
- 21. Y. J. Yu, Y. Hu, S. Y. Yang, W. Luo, Y. Yuan, C. C. Peng, J. F. Liu, A. Khan, Z. Q. Jiang and L. S. Liao, *Angew Chem Int Ed Engl*, 2020, **59**, 21578-21584.
- 22. K. R. Graham, Y. Yang, J. R. Sommer, A. H. Shelton, K. S. Schanze, J. Xue and J. R. Reynolds, *Chemistry of Materials*, 2011, **23**, 5305-5312.
- 23. A. Minotto, P. Murto, Z. Genene, A. Zampetti, G. Carnicella, W. Mammo, M. R. Andersson, E. Wang and F. Cacialli, *Adv Mater*, 2018, DOI: 10.1002/adma.201706584, e1706584.
- 24. J. L. Linyu Cao, Zhi-Qiang Zhu, Liang Huang, and Jian Li, *ACS Appl Mater Interfaces*, 2021, **13**, 60261-60268.
- 25. A. Shahalizad, A. Malinge, L. Hu, G. Laflamme, L. Haeberlé, D. M. Myers, J. Mao, W. G. Skene and S. Kéna Cohen, *Advanced Functional Materials*, 2020, **31**, 2007119.
- A. D. A. Afshin Shahalizad, Chantal Andraud, Muhammad Hasnan Sazzad, and Y. T. Dae-Hyeon Kim, Jean-Charles Ribierre, Jean-Michel Nunzi, Chihaya Adachi, *Organic Electronics*, 2017, 44, 50-58.
- 27. F. D. Zhu-Qi Chen, Zu-Qiang Bian, Chun-Hui Huang, *Organic Electronics*, 2010, **11**, 369–376.
- 28. O. Fenwick, J. K. Sprafke, J. Binas, D. V. Kondratuk, F. Di Stasio, H. L. Anderson and F. Cacialli, *Nano Lett*, 2011, **11**, 2451-2456.
- 29. Y. Xuan, G. Qian, Z. Wang and D. Ma, *Thin Solid Films*, 2008, **516**, 7891-7893.
- 30. G. Tregnago, T. T. Steckler, O. Fenwick, M. R. Andersson and F. Cacialli, *Journal of Materials Chemistry C*, 2015, **3**, 2792-2797.
- U. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D'Aleo, V. Placide, M. Mamada, Y. Tsuchiya and C. Adachi, *Angew Chem Int Ed Engl*, 2021, 60, 8477-8482.
- 32. D. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington and H. Bronstein, *J Am Chem Soc*, 2019, **141**, 18390-18394.
- 33. M. T. Sharbati, F. Panahi and A. Gharavi, *IEEE Photonics Technology Letters*, 2010, **22**, 1695-1697.
- 34. Q. Liang, J. Xu, J. Xue and J. Qiao, *Chem Commun (Camb)*, 2020, **56**, 8988-8991.
- 35. B. D. Gang Qian, Min Luo, Dengbin Yu, Jie Zhan, Zhiqiang Zhang, and a. Z. Y. W. Dongge Ma, *Chem. Mater.*, 2008, **20**, 6208–6216.
- G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, Z. Y. Wang and D. Ma, *Advanced Materials*, 2009, 21, 111-116.