Supplementary information

Negative magnetoresistance in different nitrogen content EuNbO$_{3-x}$N$_x$ single-crystalline thin films

Takahiro Maruyamaa, Yasushi Hiroseb, Tsukasa Katayamac,d, Yuki Sugisawae, Daiichiro Sekibae, Tetsuya Hasegawaa,f, and Akira Chikamatsu*f

aDepartment of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

bDepartment of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

cResearch Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan

dJST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

eGraduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

fDepartment of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Analysis of the nitrogen contents of thin films through RBS and ERDA

The N/Eu ratios of the films were accurately determined via Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA) using the following steps:

1. First, as the stopping powers of RBS and ERDA are different, it is necessary to clarify the relation between the two powers by stoichiometric oxides. The ratio of the stopping power of RBS (Ω_{RBS}) to that of ERDA (Ω_{ERDA}) ($\Omega_{\text{RBS}}/\Omega_{\text{ERDA}}$) was estimated using ZnO for sample 1S (EuNbO$_{2.4}$N$_{0.6}$ film on STO) and sample 2S (EuNbO$_{2.3}$N$_{0.7}$ film on STO) and ZrO$_2$ for sample 3S (EuNbO$_{2.0}$N$_{1.0}$ film on STO). As the ZrO$_2$ sample contained a small amount of Hf, we assumed that $N_{Zr} + N_{Hf} = 2$. $\Omega_{\text{RBS}}/\Omega_{\text{ERDA}}$ was determined according to the following formulae:

\[\frac{\Omega_{\text{RBS}}}{\Omega_{\text{ERDA}}} = \frac{N_O}{N_{Zn}} \frac{Y_{Zn}/\sigma_{Zn}}{Y_O/\sigma_O} \] for samples 1S and 2S

\[\frac{\Omega_{\text{RBS}}}{\Omega_{\text{ERDA}}} = \frac{N_O}{N_{Zr}+N_{Hf}} \frac{Y_{Zr}/\sigma_{Zr}+Y_{Hf}/\sigma_{Hf}}{Y_O/\sigma_O} \] for sample 3S

where N, Y, and σ are the number of atoms in the formula weight, total counts measured in the spectrum, and differential scattering cross section, respectively. The differential scattering cross section of each element was calculated using the SIMNRA program. Y_{Zn} and Y_{Hf} were obtained from the RBS spectrum and Y_O from the ERDA spectrum.

2. Eu/N was obtained by substituting the values of the stopping power ratio into the following formula:
\[
\frac{N_N}{N_{Eu}} = \frac{\frac{Y_N}{\sigma_N}}{\frac{Y_{Eu}}{\sigma_{Eu}}} \frac{\Omega_{RBS}}{\Omega_{ERDA}}
\]

where \(Y_{Eu}\) and \(Y_N\) were obtained from the RBS spectrum. \(N\) recoil spectra were extracted from the ERDA spectrum for each sample. The differential scattering cross section of each element was also calculated using the SIMNRA program, similar to the first step.
Figure S1. RBS spectra of samples (a) 1S, (b) 2S, and (c) 3S. ΔE vs. residual energy ERDA histograms of samples (d) 1S, (e) 2S, and (f) 3S. (h), (i), and (j) show the N recoil spectra extracted from (c), (d), and (e) respectively, which are obtained by integration along ΔE.
Table S1. Values of Y_N, Y_{Eu}, σ_N, σ_{Eu}, $\Omega_{RBS}/\Omega_{ERDA}$ and N_N/N_{Eu}.

<table>
<thead>
<tr>
<th></th>
<th>Sample 1S</th>
<th>Sample 2S</th>
<th>Sample 3S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega_{RBS}/\Omega_{ERDA}$</td>
<td>8.93</td>
<td>8.93</td>
<td>9.77</td>
</tr>
<tr>
<td>Y_{Eu}</td>
<td>7233</td>
<td>8095</td>
<td>20749</td>
</tr>
<tr>
<td>Y_N</td>
<td>430</td>
<td>575</td>
<td>1805</td>
</tr>
<tr>
<td>σ_{Eu}</td>
<td>1044.8</td>
<td>1044.8</td>
<td>1044.8</td>
</tr>
<tr>
<td>σ_N</td>
<td>935</td>
<td>935</td>
<td>935</td>
</tr>
<tr>
<td>N_N/N_{Eu}</td>
<td>0.59</td>
<td>0.71</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Figure S2. EDS spectra of the ENON films fabricated on GSO and STO, where each spectrum is normalized by the Nb La peak. (Insets show the Nb La peak of each spectrum.)
Figure S3. Two-dimensional 2θ–χ images of the (a, b) EuNbO$_{2.4}$N$_{0.6}$, (c, d) EuNbO$_{2.3}$N$_{0.7}$, and (e, f) EuNbO$_{2.0}$N$_{1.0}$ films deposited on STO at $\chi = 90^\circ$ and 45°.
Figure S4. Two-dimensional 2θ–χ images of the (a, b) EuNbO$_{2.4}$N$_{0.6}$, (c, d) EuNbO$_{2.3}$N$_{0.7}$, and (e, f) EuNbO$_{2.0}$N$_{1.0}$ films deposited on GSO at $\chi = 90^\circ$ and 45°.
Figure S5. Temperature dependence of the MR ratio under 50 kOe for the EuNbO$_{2.0}$N$_{1.0}$ film deposited on GSO.