Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Fabrication and characterization of thin-film field-effect transistors with alkylphenyl[n]phenacenes (n = 4 - 6)

Yanting Zhang,^a Ritsuko Eguchi,^a Hideki Okamoto,^b Kenta Goto,^c Fumito Tani,^c Minoru Yamaji,^d Hidenori Goto,^a Yoshihiro Kubozono^{a*}

- a) Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- b) Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-7850, Japan
- c) Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
- d) Division of Molecular Science, Graduate School of Science and Engineering, Gunma University, Ota 373-0057 Japan

Contents

- (1) Detailed synthetic procedures and physical data for new compounds synthesized in this study.
- (2) NMR spectra of new compounds synthesized in this study (Figure S1-1~24).
- (3) UV-Vis absorption and fluorescence spectra of PhCn'-[n]phenacenes in solution (in odichlorobenzene) and solid phases (Figure S2).
- (4) AFM images of thin films of PhC10-CHR, PhC14-CHR, PhC10-PIC, PhC14-PIC, PhC10-FUL and PhC14-FUL.
- (5) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14-FUL thin-film FETs with SiO₂ gate dielectric (Figures S4 and S5).

(6) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14-FUL thin-film FETs with ZrO₂ gate dielectric (Figures S6 and S7).

(1) Experimental details and physical data for samples synthesized in this study. Methyl 6-trifluoromethanesulfonyloxy-1-naphthoate 2

To a solution of methyl 6-hydroxy-1-naphthoate **1** (5.0 g, 24.7 mmol) in CH₂Cl₂ (250 ml) was dropwise added Tf₂O (10.5 g, 37.1 mmol) at $-80 - -78^{\circ}$ C. The solution was stirred at $-80 - -75^{\circ}$ C for 3 h. The reaction was quenched with saturated NH₄Cl (50 ml). The organic layer was washed successively with water, 1 M HCl, NaHCO₃ and dried (Na₂SO₄). The solvent was removed under reduced pressure and the residue was chromatographed on silica gel (toluene) to afford triflate **2** (8.07 g, 98%) as pale brown plates, mp 66–66.5°C (Lit.^{S1.} 58–60°C). ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 9.10 (d, 1H, *J* = 9.5 Hz), 8.28 (dd, 1H, *J* = 7.3, 1.2 Hz), 8.05 (d, 1H, *j* = 8.3 Hz), 7.80 (d, 1H, *J* = 2.6 Hz), 7.62 (dd, 1H, *J* = 8.3, 7.3 Hz), 7.49 (dd, 1H, *J* = 9.5, 2.6 Hz), 4.02 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 167.4, 147.3, 134.2, 133.4, 131.6, 130.5, 129.30 127.31, 126.6, 122.1*, 121.3, 119.9*, 119.8, 117.8*, 115.7*, 52.6. Asterisked signals are assigned to CF₃ (*J*_{CF} = 320 Hz).

[S1] Y. Lv, M. Li, S. Cao, L. Tong, T. Peng, L. Wei, H. Xie, J. Ding, and W. Duan, *Med. Chem. Commun.*, 2015, **6**, 1375.

Methyl 6-(1-decynyl)-1-naphthoate 3a

A mixture of troflate **2** (1.34 g, 4.0 mmol), 1-decyne (660 mg, 4.8 mmol), $Pd(PPh_3)_2Cl_2$ (140 mg, 0.20 mmol), CuI (20 mg, 0.11 mmol) in ^{*i*}Pr₂NH (25 ml) was deaerated three evacuation-refilling with Ar cycles and refluxed for 22 h. The solvent was removed under reduced pressure. The residue was passed through a short silica-gel column (toluene). The crude material was

repeatedly separated by preparative liquid chromatography (silica-gel, hexane/AcOEt = 10/1) to afford compound **3a** (1.22 g, 94.5%) as pale brown waxy solid.

¹**H** NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.34 (d, 1H, J = 8.8 Hz), 8.16 (dd, 1H, J = 7.3, 1.1 Hz), 7.95– 7.92 (2H, two signals overlap), 7.58 (dd, 1H, J = 8.8, 1.7 Hz), 7.48 (t, 1H, J = 7.8 Hz), 4.00 (s, 3H), 2.46 (t, 2H, J = 7.0 Hz), 1.64 (quin, 2H, J = 7.2 Hz), 1.48 (quin, 2H, J = 7.2 Hz), 1.38– 1.23 (m, 8H), 0.89 (t, 3H, J = 7.0 Hz).

¹³C NMR (151 MHz, CDCl₃) δ_C 167.97, 133.67, 133.11, 131.52, 130.75, 130.64, 130.48, 127.05, 125.88, 125.18, 122.09, 91.88, 80.52, 52.36, 32.00, 29.36, 29.29, 29.12, 28.87, 22.82, 19.66, 14.28.

HRMS (FAB) *m*/*z* Calcd. for C₂₂H₂₆O₂: 322.1933. Found. 322.1933 (M⁺).

Methyl 6-(1-tetradecynyl)-1-naphthoate 3b

A mixture of triflate **2** (2.00 g, 6.00 mmol), 1-tetradecyne (1.80 mL, 7.32 mmol), Pd(PPh₃)₂Cl₂ (440 mg, 0.692 mmol) and CuI (133 mg, 0.70 mmol), in diisopropylamine (30 mL) was refluxed under argon for 16 h. The mixture was concentrated and the residue was separated by activated alumina column chromatography using hexane : CH₂Cl₂ (10:1) as an eluent to give compound **3b** as a dark brown oil (1.31 g, 3.46 mmol **A**) along with a fraction containing the desired compound **3b**. The latter was further separated by alumina column chromatography using hexane as an eluent to give additional compound **3b** (499 mg, 1.32 mmol), **B**) as yellow oil. The total yield of compound **3b** (**A**+**B**) was 80% (1.81 g, 4.79 mmol). Yellow oil, ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.84 (d, *J* = 9.0 Hz, 1H), 8.16 (d, *J* = 1.3 Hz, 1H), 7.94-7.93 (m, 2H), 7.58 (d, *J* = 1.8 Hz, 1H), 7.48 (dd, *J* = 8.2, 9.0 Hz, 1H), 4.01 (s, 3H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.65 (quin, *J* = 7.2, Hz, 2H), 1.48 (quin, *J* = 7.0, Hz, 2H), 1.33-1.27 (m, 20H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta_{\rm C}$ 168.0, 133.7, 133.1, 131.5, 130.8 130.6, 130.5, 127.1, 125.9, 125.2, 122.1, 91.9, 80.6, 52.3, 32.1, 29.82, 29.80, 29.79, 29.7, 29.5, 29.3, 29.1, 28.9, 22.8, 19.7, 14.3. HRMS (FAB) Calcd. for C₂₆H₃₄O₂: 378.2559. Found: *m/z* 378.2554.

Methyl 6-decyl-1-naphthoate 4a

A mixture of compound **3a** (1.22 g, 3.78 mmol) and PtO_2 (42 mg, 0.19 mmol, 5 mol%) in AcOEt (30 ml) was vigorously stirred at r.t. under a H₂ atmosphere for 16 h. The mixture was filtered through a short silica-gel pad and the filtrate was concentrated under reduced pressure to afford compound **4a** (1.22 g, 99%) as an off-white waxy solid.

¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.23 (d, 1H, *J* = 8.8 hz), 8.12 (dd, 1H, *J* = 7.2 Hz, 1.2 Hz), 7.95 (d, 1H, *J* = 8.1 Hz), 7.65 (brd, 1H, *J* = 1.1 Hz), 7.47 (dd, 1H, *J* = 8.8, 1.8 Hz), 7.46 (dd, 1H, *J* = 8.1, 7.3 Hz), 4.00 (s, 3H), 2.78 (t, 2H, *J* = 7.5 Hz), 1.69 (quin, 2H, *J* = 7.5 Hz), 1.40–1.20 (m, 14H), 0.88 (t, 3H, *J* = 7.0 Hz).

¹³C NMR (151 MHz, CDCl₃) δ_C 168.29, 140.99, 134.23, 133.06, 129.89, 129.54, 129.51, 127.03, 126.94, 125.75, 124.58, 52.25, 35.97, 32.039, 31.35, 29.76, 29.74, 29.67, 29.47, 29.46, 22.83, 14.28.

HRMS (FAB) *m*/*z* Calcd. for C₂₂H₃₀O₂: 326.2246. Found. 326.2236 (M⁺)

Methyl 6-tetradecyl-1-naphthoate 4b

A mixture of compound **3b** (1.07 g, 2.81 mmol), PtO₂ (60.5 mg, 0.266 mmol) was stirred under hydrogen atmosphere at r.t. for 24 h. The resulting mixture was chromatographed on silica gel using hexane : AcOEt (9:1) to remove the platinum catalyst to afford **4b** (942 mg, 2.46 mmol, 87.7%). Colorless crystals, m.p. 48.0-48.5 °C. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 8.94 (d, *J* = 9.0 Hz, 1H), 8.16 (d, *J* = 1.2 Hz, 1H), 7.93 (d, *J* = 8.3 Hz, 1H), 7.65 (s.1H), 7.49 - 7.45 (m, 2H), 4.01 (s, 3H), 2.46 (t, *J* = 7.1 Hz, 2H), 1.65 (quin, *J* = 7.1, 2H), 1.48 (quin, *J* = 7.0, 2H) 1.46-1.27 (m, 20H), 0.88 (t, *J* = 7.0, Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta_{\rm C}$ 168.2, 141.0, 134.3, 133.0, 129.9, 129.5, 127.0, 126.9, 125.8, 124.5, 52.2, 36.0, 32.1, 31.3, 29.84, 29.82, 29.81*, 29.80, 29.74, 29.67, 29.51, 29.47, 22.8, 14.3. IR *v_{max}* 3399 (C=O),3025 (C-H), 3007 (C-H), 2953 (C-H), 2912 (C-H), 2847 (C-H), 1731 (C=O), 1455, 1028 (C-O), 835 (C-H), 758 (C-H) cm⁻¹. Anal. Calcd. for C, 81.62; H, 10.01. Found C, 81.65; H, 9.93.

Methyl 6-phenyl-1-naphthoate 4b

A mixture of methyl triflate **2** (1.00 g, 3.0 mmol), phenylboronic acid (549 mg, 4.5 mmol), $Pd(PPh_3)_4$ (173 mg, 0.15 mmol), and K_2CO_3 (1.24 g, 9.0 mmol) in a mixture of toluene (28 ml), EtOH (3 ml), and H₂O (3 ml) was degassed by three freeze-pump cycles. The resulting mixture was heated at 90°C for 4.5 h under Ar. The organic phase was filtered through a silica-gel pad and concentrated. The residue was chromatographed on silica-gel (toluene) to afford methyl compound **4c** (744 mg, 94%) as colorless solid.

Mp, 77-78.5°C (lit.^{S2} 61.3-62.9°C)

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 9.00 (d, 1H, *J* = 8.9 Hz), 8.20 (dd, 1H, *J* = 7.2, 1.2 Hz), 8.10-8.07 (m, 2H), 7.90 (dd, 1H, *J* = 8.8, 2.0 Hz), 7.76-7.70 (m, 2H), 7.55-7.49 (m, 3H), 7.41 (m, 1H), 4.03 (s, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ_C 168.13, 140.60, 138.89, 134.32, 133.80, 130.67, 130.37, 129.07, 127.77, 127.56, 127.53, 127.05, 126.56, 126.33, 125.10, 52.35.

[S2] P. Álvarez-Bercedo and R. Martin, J. Am. Chem. Soc. 2010, 132, 17352.

1-(bromomethyl)-6-decylnaphthalene 5a

To a mixture of LiAlH₄ (284 mg, 7.48 mmol) in THF (50 ml) was dropwise added a solution of compound **4a** (1.22 g, 3.74 mmol) in THF (10 ml). The reaction mixture was stirred at r.t. for 17.5 h. The reaction was quenched with water (5 ml) and the THF was removed under reduced pressure. The residue was shaken with a mixture of AcOEt (50 ml) and 10% HCl (20 ml). The organic phase was collected, washed with NaHCO₃ aq., dried (Na₂SO₄), and concentrated to afford (6-decylnaphthalen-1-yl)methanol (1.08 g, 96%) as an off-white solid.

Mp 48–50°C

¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.06 (d, 1H, *J* = 8.6 Hz), 7.75 (d, 1H, *J* = 8.0 Hz), 7.65 (brs, 1H), 7.45 (brd, 1H, *J* = 6.7 Hz), 7.43–7.39 (2H, d and dd signals overlap), 5.14 (s, 2H), 2.77 (t, 2H, *J* = 7.4 Hz), 1.70 (quin, 2H, *J* = 7.4 Hz), 1.40–1.20 (m, 14H), 0.88 (t, 3H, *J* = 6.9 Hz). ¹³**C NMR** (151 MHz, CDCl₃) $\delta_{\rm C}$ 140.70, 136.21, 134.17, 129.77, 128.32, 128.10, 127.24, 125.52, 124.71, 123.65, 63.97, 36.11, 32.05, 31.52, 29.77, 29.75, 29.69, 29.48 (2C), 22.83, 14.28.

HRMS (FAB) *m*/*z* Calcd. for C₂₁H₃₀O: 298.2297. Found. 298.2269 (M⁺)

To a solution of (6-decylnaphthalen-1-yl)methanol (1.08 g, 3.62 mmol) in dioxane (20 ml) was added PBr₃ (1.95 g, 7.24 mmol). The mixture was stirred at r.t. for 15 h. The reaction was quenched with sat. NaHCO₃. Dioxane was removed under reduced pressure and the residue was extracted with a mixture of toluene (50 ml) and water (30 ml). The insoluble materials were filtered and washed with toluene. The extract and washings were combined and dried (Na₂SO₄). The solvent was removed under reduced pressure to afford 1-(bromomethyl)-6-decylnaphthalene **5a** (1.04 g, 79%).

Mp 53–54°C

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 8.07 (d, 1H, *J* = 8.4 Hz), 7.78 (d, 1H, *J* = 8.0 Hz), 7.66 (brs, 1H), 7.45–7.46 (m, 2H), 7.37 (dd, *J* = 8.1, 7.0 Hz), 4.96 (s, 2H), 2.78 (t, 2H, *J* = 7.7 Hz), 1.71 (quin, 2H, *J* = 7.5 Hz), 1.41–1.20 (m, 14H), 0.88 (t, 3H, *J* = 7.0 Hz).

¹³C NMR (CDCl₃, 1510 MHz) δ_C 141.09, 134.38, 133.16, 129.60, 129.50, 128.34, 127.40, 127.06, 125.49, 123.69, 36.08, 32.09, 32.05, 31.46, 29.77, 29.74, 29.68, 29.50, 29.48, 22.84, 14.28.

HRMS (FAB) m/z Calcd. for C₂₁H₂₉⁷⁹Br: 360.1453. Found. 360.1424 (M⁺).

1-(bromomethyl)-6-tetradecylnaphthalene 5b

A solution of compound **4b** (300 mg, 0.786 mmol) in dry THF (5 mL) was added dropwise to a suspension of LiAlH₄ (63.6 mg, 1.68 mmol) in dry THF (5 mL) at 0 °C. The resulting mixture was stirred at room temperature for 3 h. Then, water (0.5 mL) was dropwise added to quench the reaction and, subsequently, 10% aqueous NaOH (2 mL) was added. The resulting mixture was extracted with ethyl acetate (3×10 mL). The combined organic layer was dried over anhydrous MgSO₄, and concentrated to afford (6-tetradecylnaphthalen-1-yl)methanol (269 mg, 0.759 mmol, 97%) as colorless needles.

Mp 63.0–64.0°C.

¹**H NMR** (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.06 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.65 (s, 1H), 7.46-7.40 (m, 3H), 5.14 (s, 2H), 2.78 (t, J = 7.5 Hz, 2H), 1.72-1.69 (m, 3H), 1.34-1.26 (m, 22H), 0.88 (t, J = 6.6, Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ_C 140.7, 136.2, 134.2, 129.8, 128.3 128.1, 127.3, 125.5, 124.7, 123.7, 64.0, 36.1, 32.1, 31.5, 29.9, 29.82*, 29.81, 29.75, 29.7, 29.51, 29.49, 22.8, 14.3.
Anal. Calcd. for C, 84.69; H, 10.80. Found C, 84.53; H, 10.49.

To a solution of (6-tetradecylnaphthalen-1-yl)methanol (925 mg, 2.61 mmol) in dioxane (20 ml) was added PBr₃ (1.41 g, 5.22 mmol). The mixture was stirred at r.t. for 15 h. The reaction was quenched with sat. NaHCO₃. Dioxane was removed under reduced pressure and the residue was extracted with a mixture of toluene (50 ml) and water (30 ml). The insoluble materials were filtered and washed with toluene. The extract and washings were combined and dried (Na₂SO₄). The solvent was removed under reduced pressure to afford compound **5b** (654 g, 60%). **Mp** 69–71 °C

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 8.07 (d, 1H, J = 8.4 Hz), 7.78 (d, 1H, J = 8.2 Hz), 7.65 (brs, 1H), 7.50–7.46 (m, 2H), 7.37 (dd, J = 8.1, 7.1 Hz), 4.96 (s, 2H), 2.78 (t, 2H, J = 7.2 Hz), 1.71 (quin, 2H, J = 7.5 Hz), 1.43–1.22 (m, 22H), 0.88 (t, 3H, J = 7.0 Hz).

¹³C NMR (CDCl₃, 1510 MHz) δ_C 141.09, 134.39, 133.16, 129.60, 129.50, 128.34, 127.40, 127.06, 125.50, 123.69, 36.08, 32.07, 31.46, 29.84, 29.82 (4C), 29.81, 29.74, 29.68, 29.51, 29.50, 22.85, 14.29,

HRMS (FAB) *m/z* Calcd. for C₂₅H₃₇⁷⁹Br: 416.2079. Found. 416.2078 (M⁺).

((6-Decylnaphthalen-1-yl)methyl)triphenylphosphonium bromide 6a

A solution of compound **5a** (900 mg, 2.49 mmol) and PPh₃ (784 mg, 2.99 mmol) in toluene (20 ml) was refluxed for 14 h. The solvent was removed under reduced pressure and the residue was washed with Et_2O mixture to afford phosphonium salt **6a** as white powder (1.50 g, 96%). This compound was used without further purification in the next Wittig reaction.

Mp 158–159°C.

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.68–7.60 (m, 10H), 7.52–7.47 (m, 6H), 7.43 (brs, 1H), 7.41– 7.37 (m, 1H), 7.24 (d, 1H, J = 8.7 Hz), 7.14 (t, 1H, J = 7.5 Hz), 6.83 (dd, 1H, J = 8.7, 1.3 Hz), 5.70 (d, 2H, $J_{\rm CP}$ = 14.0 Hz), 2.58 (t, 2H, J = 7.3 Hz), 1.57 (quin, 2H, J = 7.3 Hz), 1.35–1.20 (m, 14H), 0.86 (t, 3H, J = 6.8 Hz).

¹³**C NMR** (CDCl₃, 151 MHz) δ_{C} 140.37, 134.93/134.91 ($J_{CP} = 2.9$ Hz), 134.40/134.3, ($J_{CP} = 9.8$ Hz), 133.75/133.73 ($J_{CP} = 2.9$ Hz), 130.87/130.84 ($J_{CP} = 4.0$ Hz), 130.15/130.06 ($J_{CP} = 12.4$ Hz), 129.71/129.66 ($J_{CP} = 6.6$ Hz), 128.84/128.81 ($J_{CP} = 4.3$ Hz), 127.91, 126.99, 125.41/125.38 ($J_{CP} = 4.0$ Hz), 123.05, 122.87/122.81 ($J_{CP} = 9.2$ Hz), 118.06/117.49 ($J_{CP} = 85.0$ Hz), 35.68, 31.98, 31.24, 29.74, 29.73, 29.61, 29.42, 29.26, 27.87/27.56 ($J_{CP} = 47.3$ Hz), 22.77, 14.22.

Triphenyl((6-Tetradecylnaphthalen-1-yl)methyl)phosphonium bromide 6b

A solution of compound **5b** (600 mg, 1.44 mmol) and PPh₃ (452 mg, 1.72 mmol) in toluene (20 ml) was refluxed for 14 h. The solvent was removed under reduced pressure and the residue was washed with Et₂O mixture to afford phosphonium salt **6b** as white powder (905 mg, 92%). This compound was used without further purification in the next Wittig reaction.

Mp >300°C.

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.70–7.62 (m, 10H), 7.53–7.48 (m, 6H), 7.45 (brs, 1H), 7.44–7.40 (m, 1H), 7.25 (d, 1H, overlapped with CHCl₃ signal), 7.18 (t, 1H, *J* = 7.6 Hz), 6.84 (dd, 1H, *J* = 8.7, 1.3 Hz), 5.77 (d, 2H, *J*_{CP} = 13.7 Hz), 2.60 (t, 2H, *J* = 7.4 Hz), 1.56 (quin, 2H, *J* = 7.3 Hz), 1.35–1.20 (m, 22H), 0.87 (t, 3H, *J* = 6.8 Hz).

¹³C NMR (CDCl₃, 151 MHz) δ_{C} 140.38, 134.93/134.91 (JCP = 2.9 Hz),134.47/134.40 (JCP = 9.8 Hz), 133.80/133.78 (JCP = 2.6 Hz), 130.93/130.91 (JCP = 4.3 Hz), 130.16/130.08 (JCP = 12.4 Hz), 129.81/129.76 (JCP = 7.2 Hz), 128.86/128.83 (JCP = 4.3 Hz), 127.94, 127.04, 125.46/125.43 (JCP = 4.0 Hz), 123.08, 122.92/122.86 (JCP = 9.2 Hz), 118.18/117.62 (JCP = 85.0 Hz), 35.72, 32.03, 31.28, 29.82, 29.81, 29.79, 29.77, 29.66, 29.48, 29.31, 27.93/27.61 (JCP = 47.3 Hz), 22.81, 14.25.

(6-Phenylnaphthalen-1-yl)methanol 7

To an ice-cooled suspension of LiAlH₄ (307 mmol) in THF (20 ml) was added a solution of compound 4c (1.41 g, 5.39 mmol) in THF (15 ml). The resulting mixture was stirred at r.t. for 19.3 h. The reaction was quenched with EtOH and the solvent was removed under reduced pressure. The residue was extracted with a mixture of AcOEt (50 ml) and 10% HCl (30 ml).

The organic phase was collected and the aqueous phase was extracted with AcOEt (2×30 ml). The combined organic phases were washed with NaHCO₃ aq. and dried (Na₂SO₄). The solvent was removed and washed with toluene to afford desired product 7 (**A** 859 mg). The washings were concentrated and residual material was separated with silica-gel column (toluene) to afford additional product 7 (**B** 217 mg). The total yield (**A** + **B**) of compound 7 was 1.07 g (85%).

Mp: 130–131°C (colorless crystals).

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 8.22 (d, 1H, *J* = 8.6 Hz), 8.08 (d, 1H, *J* = 2.0 Hz), 7.88 (d, 1H, *J* = 8.1 Hz), 7.83 (dd, 1H, *J* = 8.6, 2.0 Hz), 7.76-7.71 (m, 2H), 7.55-7.46 (m, 4H), 7.42-7.37 (m, 1H), 5.19 (s, 2H).

¹³C NMR (CDCl₃, 151 MHz) δ_C 140.98, 138.69, 136.33, 134.25, 130.55, 129.05, 129.04, 127.61, 127.53, 126.62, 126.16, 126.02, 125.56, 124.43, 63.90.

HRMS (FAB) Calcd. for C₁₇H₁₄O, 234.1045. Found, *m*/*z* 234.1067 (M⁺).

6-Phenyl-1-naphthaldehyde 8

To a solution of compound 7 (344 mg, 1.46 mmol) in CH_2Cl_2 (10 ml) was added pyridinium chlororchromate (PCC, 629 mg, 2.92 mmol). The dark brown mixture was stirred at r.t. for 1 h. The reaction mixture was filtered through a short silica-gel column using CH_2Cl_2 . The solvent was removed to afford aldehyde 8 (320 mg, 92 %).

Mp: 91–92.5°C (colorless plates).

¹**H NMR** (CDCl₃, 600 MHz): $\delta_{\rm H}$ 10.41 (s, 1H), 9.33 (d, 1H, *J* = 8.8 Hz), 8.15 (d, 1H, *J* = 8.2 Hz), 8.11 (d, 1H, *J* = 1.9 Hz), 7.99 (dd, 1H, *J* = 7.0, 1.1 Hz), 7.97 (dd, 1H, *J* = 8.8, 1.9 Hz), 7.75–7.72 (m, 2H), 7.66 (dd, 1H, *J* = 8.1, 7.1 Hz), 7.53–7.49 (m, 2H), 7.44–7.40 (m, 1H), . ¹³**C NMR** (CDCl₃, 151 MHz): $\delta_{\rm H}$ 193.70, 140.42, 139.68, 136.74, 135.63, 134.22, 131.45, 129.73, 129.11, 128.80, 127.91, 127.53, 126.23, 125.60, 125.45. The NMR spectral data were identical with those previously reported.^{S3}

[S3] Y. Mao, J. Jiang, D. Yuan, X. Chen, Y. Wang, L. Hu, Y. Zhang, Overcoming peri- and ortho-selectivity in C–H methylation of 1-naphthaldehydes by a tunable transient ligand strategy, *Chem. Sci.*, 2022, **13**, 2900–2908.

Triphenyl((6-phenylnaphthalen-1-yl)methyl)phosphonium bromide 8

To an ice-cooled solution of 1-hyrdoxymethyl-6-phenylnaphthalene (980 mg, 4.18 mmol) in CH_2Cl_2 (20 ml) was dropwise added a solution of PBr₃ (2.72 g, 10 mmol) in CH_2Cl_2 (5 ml). The resulting mixture was stirred at 0°C for 10 min. Then, the reaction was allowed to warm to r.t. and stirred at r.t. for 2 h. The reaction was quenched with water and the organic phase was collected, washed with water, NaHCO₃ aq., and dried (Na₂SO₄). The solvent was removed and the residue was passed through a short silica-gel column (toluene) to afford 1-bromomethyl-6-phenylnaphthalene (1.16 g, 93%).

Colorless crystals, mp, 143-145°C.

¹**H** NMR (CDCl₃, 600 MHz) $\delta_{\rm H}$ 8.24 (d, 1H, J = 8.8 Hz), 8.09 (d, 1H, J = 1.9 Hz), 7.92-7.88 (m, 2H, d and dd signals overlap), 7.76-7.72 (m, 2H), 7.55 (dd, 1H, J = 7.0, 1.0 Hz), 7.52-7.49 (m, 2H), 7.44 (dd, 1H, J = 8.2, 7.0). 7.42-7.38 (m, 1H), 5.00 (s, 2H).

¹³C NMR (CDCl₃, 151 MHz) δ_C 140.82, 139.11, 134.50, 133.37, 130.36, 130.23, 129.09, 127.90, 127.74, 127.58, 126.81, 126.46, 126.03, 124.47, 31.84.

HRMS (FAB) Calcd. for C₁₇H₁₃⁷⁹Br, 296.0201. Found, *m/z* 296.0177 (M⁺).

A solution of 1-bromomethyl-6-phenylnaphthalene (1.00 g, 3.36 mmol) and PPh₃ (1.06 g, 4.04 mmol) in toluene (40 ml) was refluxed for 14.5 h. The precipitate formed was collected and washed with toluene to afford phosphonium salt **9** as colorless crystals (1.79 g, 95%). **Mp**, 271-273°C.

¹**H NMR** (CDCl₃, 600 MHz) $\delta_{\rm H}$ 7.82 (d, 1H, J = 1.7 Hz), 7.70-7.61 (m, 10H), 7.56-7.52 (m, 2H), 7.51-7.46 8m, 6H), 7.46-7.40 (m, 4H), 7.36–7.32 (m, 1H), 7.22 (dd, 1H, J = 8.6, 1.7 Hz), 7.16 (ddd, 1H, J = 8.0, 7.2, 0.8 Hz).

¹³C NMR (CDCl₃, 151 MHz) δ_{C} 140.25, 137.99, 134.94*, 134.92* ($J_{C-P} = 2.8$ Hz), 134.50*, 134.44*($J_{C-P} = 9.8$ Hz), 133.75*, 133.73* ($J_{C-P} = 2.8$ Hz), 131.57*, 131.54* ($J_{C-P} = 4.3$ Hz), 130.68*, 130.64* ($J_{C-P} = 6.6$ Hz), 130.16*, 130.08* ($J_{C-P} = 12.4$ Hz), 129.49*, 129.46* ($J_{C-P} = 4.3$ Hz), 128.99, 127.68, 127.22, 126.09, 125.86*, 125.84* ($J_{C-P} = 4.3$ Hz), 125.73, 124.12, 123.20*, 123.14* ($J_{C-P} = 9.2$ Hz), 118.06*, 117.49* ($J_{C-P} = 85.3$ Hz), 27.89, 27.58 ($J_{C-P} = 47.3$ Hz). (The asterisked signals show coupling with ³¹P.)

HRMS (FAB) Calcd. for C₃₅H₂₈P⁺, 479.1929. Found, *m*/*z* 479.1932 (M⁺)

1-Methyl-7-phenylphenanthrene 12

Method 1: To a solution of (*o*-tolylmethyl)triphenylphosphonium bromide (984 mg, 2.2 mmol), 3-phentylbenzaldehyde **10** (364 mg, 2.0 mmol) and Bu₄NBr (64 mg, 0.20 mmol) in CH₂Cl₂ (10 ml) was added a solution of KOH (1.2 g, 21 mmol) in water (1.2 ml). The mixture was stirred at r.t. for 15 h. The organic phase was separated, washed with water, dried (Na₂SO₄), and concentrated. The residue was chromatographed on silica-gel (hexane). The obtained oil (438 mg) was dissolved in cyclohexane (500 ml) and small pieces of I₂ was added. The solution was irradiated with black-light lamps (16 × 16 W) with air-bubbling for 22 h. The solvent was removed and the residue was dissolved in CH₂Cl₂ and the solution was washed with aqueous sodium thiosulfate (10%) and dried (Na₂SO₄). CH₂Cl₂ was removed and the residue was recrystallized from EtOH to afford 1-methyl-7-phenylphenanthrene **12** (156 mg, 29 % for two steps) as colorless plates.

Mp 224–225°C.

¹**H** NMR: (CDCl₃, 600 MHz) $\delta_{\rm H}$ 8.77 (d, 1H, *J* = 8.5 Hz), 8.01 (d, 1H, *J* = 8.3 Hz), 8.12 (d, 1H, *J* = 1.9 Hz), 8.00 (d, 1H, *J* = 9.0 Hz), 7.92 (dd, 1H, *J* = 8.5, 1.9 Hz), 7.85 (d, 1H, *J* = 9.0 Hz), 7.79 (m, 2H), 7.57 (dd, 1H, *J* = 8.2, 7.1 Hz), 7.15 (n, 2H), 7.66 (d, 1H, *J* = 7.1 Hz), 7.41 (m, 1H), 2.78 (s, 3H).

¹³C NMR: (CDCl₃, 151 MHz) δ_C 140.95, 139.19, 135.09, 132.12, 130.97, 130.33, 129.92, 129.04, 127.97, 127.57, 127.51, 127.02, 126.61, 126.43, 125.96, 123.71, 123.47, 121.05, 20.11.
Anal: Calcd. for C₂₁H₁₆, C, 93.99; H, 6.01. Found C, 93.75; H, 5.83.

Method 2: To a solution of phosphonium salt **10** (1.18 g, 2.31 mmol) and *o*-tolualdehyde (263 mg, 2.19 mmol) and dicyclohexano-18-crown-6 (86 mg, 0.23 mmol) in CH₂Cl₂ (20 ml) was added a mixture of KOH (2.6 g) in water (2.6 ml). The mixture was stirred at rt for 14 h. The resulting mixture was washed with water and the organic phase was collected and dried (Na₂SO₄). The solvent was removed and the residue was chromatographed (silica gel, hexane). The obtained colorless oil was dissolved in cyclohexane (500 ml) and small pieces of I₂ were added. The resulting solution was irradiated with black-light lamps (16 × 16 W) with airbubbling for 22 h. The resulting solution was recrystallized from EtOH to afford 1-methyl-6-phenylphenanthrene **12** (156 mg, 29 % for two steps) as colorless plates. The NMR spectral data for the obtained product were the same as those observed for the product produced by the Method 1.

1-Bromomethyl-7-phenylnaphthalene 13

A mixture of compound **12** (250 mg, 0.93 mmol), NBS (164 mg, 0.93 mmol), and BPO (75wt% 30 mg, 0.09 mmol) in CCl₄ (20 ml) was refluxed for 16 h. The solvent was removed and the residue was chromatographed on silica gel (toluene). The crude product, (12 : 13 = 1 : 4), was

recrystallized from a CH₂Cl₂-hexane mixture to afford the desired product **13** as pale brown plates (169 mg, 52 %).

Mp 201–203°C.

¹**H** NMR (CDCl₃, 600 MHz) δ_H 8.75 (d, 1H, *J* = 8.5 Hz), 8.74 (d, 1H, *J* = 8.1 Hz), 8.07 (d, 1H, *J* = 1.8 Hz), 8.13 (d, 1H, *J* = 9.1 Hz), 7.96 (d, 1H, *J* = 9.1 Hz), 7.94 (dd, 1H, *J* = 8.5, 1.9 Hz), 7.80–7.77 (m, 2H), 7.66 (dd, 1H, *J* = 7.0, 0.9 Hz), 7.61 (t, 1H *J* = 7.8 Hz), 7.54–7.50 (m, 2H), 7.44–7.39 (m, 1H), 5.03 (s, 2H).

¹³C NMR (CDCl₃, 1510 MHz) δ_C 140.72. 139.70, 134.07, 132.21, 131.11, 130.02, 129.70, 129.09, 128.54, 128.12, 127.72, 127.52, 126.71, 126.40, 126.32, 124.29, 123.63, 122.60, 32.18.
Anal: Calcd. for C₂₁H₁₅Br, C, 72.64; H, 4.35. Found C, 72.52; H, 4.72.

7-Phenylphenanthrene-1-carbaldehyde 14

A solution of compound **13** (321 mg, 0.924 mmol) and hexamethylenetetramine (HMT) (259 mg, 1.85 mmol) in CHCl₃ (20 ml) was refluxed for 2.5 h. Another portion of HMT (130 mg, 0.93 mol) was added and the resulting mixture was further refluxed for 2 h. CHCl₃ was removed under reduced pressure and the residue was dissolved in AcOH (15 ml) and water (5 ml). The brown solution was refluxed for 12. The obtained mixture was diluted with sat. NaCl aq. (50 ml) and extracted with CHCl₃ (2×30 ml). The extracts were combined, washed with sat. NaH CO3 aq. then water, dried (Na₂SO₄), and concentrated. The residue was chromatographed on silica-gel (CHCl₃) to afford phenanthrene carboaldehyde (169 mg, 65%) as colorless fine needles.

Mp: 202–204°C

¹**H** NMR (CDCl₃, 600 MHz): $\delta_{\rm H}$ 10.53 (s, 1H), 9.19 (d, 1H, J = 9.1), 9.00 (d, 1H, J = 8.3 Hz), 8.76 (d, 1H, J = 8.5 Hz), 8.15 (d, 1H, J = 1.9 Hz), 8.11 (dd, 1H, J = 7.1, 1.0 Hz), 8.02 (d, 1H, J = 9.1 Hz), 7.97 (dd, 1H, *J* = 8.5, 1.9 Hz), 7.83 (dd, 1H, *J* = 8.2, 7.2 Hz), 7.80–7.77 (m, 2H), 7.55–7.51 (m, 2H), 7.45–7.41 (m, 1H).

¹³C NMR (CDCl₃, 151 MHz): δ_C 193.75, 140.54, 140.12, 135.35, 132.29, 131.83, 130.92, 130.60, 130.53, 129.22, 129.13, 128.99, 127.85, 127.54, 126.71, 126.61, 125.98, 123.60, 122.81.

3-Decyl-9-phenylchrysene (PhC10-CHR)

To a mixture of aldehyde **15** (100 mg, 0.55 mmol)), phosphonium salt **6a** (311 mg, 0.50 mmol), and dicyclohexano-18-crown-6 (DC18C6, 20 mg, 0.055 mmol) in CH₂Cl₂ (10 ml) was added a solution of KOH (0.68 g, 12 mmol) in water (0.7 ml). The mixture was stirred at r.t. for 17 h. Water (20 ml) was added to the resulting mixture. The organic phase was collected, dried (Na₂SO₄), filtered through a short silica-gel column, and concentrated. The residual diarylethene **17a** (224 mg) was used for the Mallory photoreaction without purification. The crude diarylethene **17a** was dissolved in cyclohexane (200 ml) and small portions of I₂ was added. The solution was irradiated with black-light lamps (6 × 15 W) for 4 h. The precipitate formed was collected and washed with toluene and EtOH to afford **PhC10-CHR** as off-white fine plates (74.3 mg, **A**). The filtrate was irradiated for 14 h. The second crop of **PhC10-CHR** was collected and washed with toluene and EtOH (14.8 mg, **B**). The total yield (**A** + **B**) of **PhC10-CHR** was 89.1 mg (40% for two steps).

Mp >300°C (colorless plates).

¹**H** NMR (CDCl₃, 600 MHz, 50°C) $\delta_{\rm H}$ 8.83 (d, 1H, *J* = 8.6 Hz), 8.75–8.67 (m, 3H), 8.19 (brs, 1H), 8.04 (d, 1H, *J* = 8.8 Hz), 8.00–7.94 (m, 2H), 7.85–7.75 (m, 3H), 7.56 (d, 1H, *J* = 8.6 Hz),

7.54–7.49 (m, 2H), 7.44–7.38 (m, 1H), 2.87 (t, 2H, *J* = 7.7 Hz), 1.79 (quin, 2H, *J* = 7.3 Hz), 1.47–1.23 (m, 14H), 0.89 (t, 3H, *J* = 6.7 Hz).

¹³C NMR (CDCl₃, 151 MHz, 50°C) δ_H 141.43, 141.16, 139.09, 132.70, 132.63, 130.09, 129.09, 128.59, 128.22, 127.91, 127.60, 127.55, 127.49, 126.65, 126.17, 123.89, 123.26, 121.90, 121.38, 36.14, 32.09, 31.57, 29.81, 29.79, 29.73, 29.59, 29.49, 22.83, 14.19.

Anal: Calcd. for C₃₄H₃₆, C, 91.84; H, 8.16. Found, C, 91.79; H, 8.25.

3-Tetradecyl-9-phenylchrysene (PhC14-CHR)

To a mixture of aldehyde **15** (100 mg, 0.55 mmol)), phosphonium salt **6b** (340 mg, 0.50 mmol), and dicyclohexano-18-crown-6 (20 mg, 0.055 mmol) in CH₂Cl₂ (10 ml) was added a solution of KOH (0.68 g, 12 mmol) in water (0.7 ml). The mixture was stirred at r.t. for 17.5 h. Water (20 ml) was added to the resulting mixture. The organic phase was collected, dried (Na₂SO₄), filtered through a short silica-gel column, and concentrated. The residual diarylethene **17b** (248 mg) was used for the Mallory photoreaction without purification. The crude diarylethene **17b** was dissolved in cyclohexane (200 ml) and small portions of I₂ was added. The solution was irradiated with black-light lamps (6 × 15 W) for 5 h. The precipitate formed was collected and washed with toluene and EtOH to afford **PhC14-CHR** as off-white fine plates (109 mg, 43% for two steps).

Mp: >300°C.

¹**H NMR** (1,1,2,2-tetrachloroethane-d₂, 600 MHz, 85°C) $\delta_{\rm H}$ 8.85 (d, 1H, J = 8.7 Hz), 8.76–8.69 (m, 3H), 8.22 (brs, 1H), 8.08 (d, 1H, J = 8.9 Hz), 8.02–7.98 (m, 2H), 7.85–7.80 (m, 3H), 7.61 (d, 1H, J = 8.6 Hz), 7.57–7.53 (m, 2H), 7.46–7.42 (m, 1H), 2.90 (t, 2H, J = 7.5 Hz), 1.84 (quin, 2H, J = 7.3 Hz), 1.53–1.27 (m, 22H), 0.89 (t, 3H, J = 6.7 Hz).

¹³C NMR (1,1,2,2-tetrachloroethane-d₂, 151 MHz, 80°C) δ_C 141.43, 140.78, 138.88, 132.51, 132.44, 129.88, 128.98, 128.87, 128.40, 128.17, 127.70, 127.56, 127.52, 127.43, 127.40, 127.39, 126.46, 126.02, 123.76, 123.14, 121.80, 121.23, 35.93, 31.91, 31.26, 29.66, 29.64, 29.60, 29.53, 29.45, 29.30, 22.65, 14.07.

Anal: Calcd. for C₃₈H₄₄, C, 91.14; H, 8.86. Found, C, 91.13; H, 8.99.

3-Decyl-10-phenylpicene (PhC10-PIC)

To a solution of phosphonium salt **7a** (250 mg, 0.40 mmol) and aldehyde **8** (102 mg, 0.44 mmol) and dicyclohecano-18-crown-6 (15 mg, 0.04 mmol) in CH₂Cl₂ (10 ml) was added a solution of KOH (500 mg, 8.9 mmol) in water (0.5 ml). The mixture was vigorously stirred at r.t. for 17.5 h. CH₂Cl₂ (10 ml) and water (10 ml) were added to the resulting mixture. The organic phase was collected, washed with water, dried (Na₂SO₄). The solution was filtered through a short silica-gel column and concentrated. The residue was dissolved in toluene (200 ml) and a small portion of I₂ was added. The solution was irradiated with black-light lamps (6 × 16 W) for 4 h. The precipitate formed was collected and successively washed with toluene and MeOH to afford **PhC10-PIC** as off-white fine plates (172 mg, 87 % for two steps). **Mp** >300°C.

¹**H** NMR (600 MHz, 1,1,2,2-tetrachloroethane-d₂, 100°C): $\delta_{\rm H}$ 8.99–8.94 (m, 2H), .8.93 (d, 1H, J = 8.9 Hz), 8.82 (d, 1H, J = 9.1 Hz), 8.80–8.76 (two doublets overlap, 2H), 8.25 (s, 1H), 8.11 (d, 1H, J = 9.1 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.4 Hz), 7.56 (t, 2H, J = 7.3 Hz), 7.45 (t, 1H, J = 7.0 Hz), 2.93 (t, 2H, J = 7.5 Hz), 1.86 (quin, 2H, J = 7.4 Hz), 1.56–1.19 (m, 14H), 0.95 (t, 3H), J = 6.0 Hz). ¹³C NMR (151 MHz, 1,1,2,2-

tetrachloroethane-d₂, 100°C): δ_{C} 141.66, 140.83, 139.31, 132.35, 132.32, 129.84, 128.94, 128.85, 128.83, 128.46, 128.37, 128.18, 127.67, 127.54, 127.40, 127.36, 126.44, 126.15, 123.74, 123.11, 122.19, 121.87, 121.63, 121.56, 35.93, 31.85, 31.18, 29.56 (2C), 29.49, 29.41, 29.23, 22.58, 13.94.

Anal Calcd. for C₃₈H₃₈, C, 92.26; H, 7.74. Found C, 92.14; H, 7.73.

3-Tetradecyl-10-phenylpicene (PhC10-PIC)

To a solution of phosphonium salt **6b** (272 mg, 0.40 mmol) and aldehyde **8** (102 mg, 0.44 mmol) and dicyclohecano-18-crown-6 (15 mg, 0.04 mmol) in CH₂Cl₂ (10 ml) was added a solution of KOH (500 mg, 8.9 mmol) in water (0.5 ml). The mixture was vigorously stirred at r.t. for 17.5 h. CH₂Cl₂ (10 ml) and water (10 ml) were added to the resulting mixture. The organic phase was collected, washed with water, dried (Na₂SO₄). The solution was filtered through a short silica-gel column and concentrated. The residue was dissolved in toluene (200 ml) and a small portion of I₂ was added. The solution was irradiated with black-light lamps (6 × 16 W) for 4 h. The precipitate formed was collected and successively washed with toluene and MeOH to afford **PhC14-PIC** as off-white fine plates (183 mg, 83 % for two steps).

Mp >300°C.

¹**H** NMR (600 MHz, 1,1,2,2-tetrachloroethane-d₂, 100°C): $\delta_{\rm H}$ 8.98–8.94 (m, 2H), .8.93 (d, 1H, J = 8.7 Hz), 8.82 (d, 1H, J = 8.9 Hz), 8.80–8.76 (two doublets overlap, 2H), 8.25 (s, 1H), 8.11 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.05–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.01 (two doublets overlap, 2H), 7.87–7.82 (m, 3H), 7.64 (d, 1H, J = 8.9 Hz), 8.95–8.91 (two doublets overlap, 2H), 8.95–8.91 (

8.2 Hz), 7.56 (t, 2H, *J* = 7.4 Hz), 7.45 (t, 1H, *J* = 7.0 Hz), 2.93 (t, 2H, *J* = 7.5 Hz), 1.86 (quin, 2H, *J* = 7.2 Hz), 1.56–1.27 (m, 22H), 0.95 (t, 3H), *J* = 6.0 Hz).

¹³C NMR (151 MHz, 1,1,2,2-tetrachloroethane-d₂, 100°C): δ_C 141.67, 140.84, 139.32, 132.37, 132.33, 129.85, 128.95, 128.86, 128.83, 128.47, 128.37, 128.19, 127.68, 127.55, 127.41, 127.37, 126.44, 126.15, 123.74, 123.12, 122.19, 121.87, 121.64, 121.57, 35.92, 31.86, 31.17, 29.61 (4C), 29.58, 29.55, 29.482, 29.40, 29.24, 22.57, 13.94.

Anal Calcd. for C₄₂H₄₆, C, 91.58; H, 8.42. Found C, 91.48; H, 8.41%.

3-Decyl-11-phenyl-fulminene PhC10-FUL

To a mixture of phosphonium salt **6a** (189 mg, 0.30 mmol), aldehyde **14** (90 mg, 0.32 mmol), and dicyclohexano-18-crown-6 (11 mg, 0.03 mmol) in CH₂Cl₂ (5 ml) was added an aqueous solution of KOH (0.5 g in 0.5 ml). The mixture was stirred for 22 h. The precipitate was collected, washed with water then EtOH, and dried. The obtained solid (diarylethene **18a**) was dissolved in toluene (200 ml) and small pieces of I₂ were added. The resulting solution was irradiated with black-light lamps (6 × 16 W) for 2 h. The precipitated product was collected by suction filtration and washed with toluene. The crude product was recrystallized from *o*-dichlorobenzene to afford **PhC10-FUL** (108 mg, 65 %) as off-white plates.

MP >300°C.

¹**H NMR** (1,1,2,2-tetrachloroethane-d₂, 100°C) $\delta_{\rm H}$ 9.05 (d, 1H, J = 9.2 Hz), 9.03 (d, 1H, J = 9.4 Hz) 9.01 (d, 1H, J = 9.2 Hz), 8.98 (d, 1H, J = 8.9 Hz), 8.96 (d, 1H, J = 8.4 Hz), 8.91 (d, 2H, J = 8.9 Hz), 8.86 (d, 1H, J = 8.8 Hz), 8.81 (d, 1H, J = 8.3 Hz), 8.26 (s, 1H), 8.16 (d, J = 8.9 Hz), 8.08–8.04 (m, 2H), 7.88–7.83 (m, 3H), 7.65 (d, 1H, J = 8.4 Hz), 7.57 (t, 2H, J = 7.3 Hz), 7.46

(t, 1H, J = 7.3 Hz), 2.95 (t, 2H, J = 7.5 Hz), 1.88 (quin, 2H, J = 7.5 Hz), 1.57–1.30 (m, 14 H, overlapped with H₂O), 0.96 (t, 3H, J = 6.5 Hz).
¹³C NMR Not obtained due to low solubility.
Anal Calcd for C₄₆H₄₈; C, 92.60; H, 7.40. Found; C, 92.35; H, 7.24.

3-Tetradecyl-11-phenyl-fulminene PhC14-FUL

To a mixture of phosphonium salt **6b** (115 mg, 0.21 mmol), aldehyde **14** (50 mg, 0.17 mmol), and dicyclohexano-18-crown-6 (7.5 mg, 0.02 mmol) in CH₂Cl₂ (5 ml) was added an aqueous solution of KOH (0.3 g in 0.3 ml). The mixture was stirred for 22 h. The precipitate was collected, washed with water then EtOH, and dried. The obtained solid was dissolved in toluene (100 ml) and small pieces of I₂ were added. The resulting solution was irradiated with black-light lamps (6×16 W) for 2h. The precipitated product was collected by suction filtration and washed with toluene. The crude product was recrystallized from *o*-dichlorobenzene to afford **PhC14-FUL** (61 mg, 61 %) as off-white plates.

MP >300°C.

¹**H** NMR (600 MHz, 1,1,2,2-tetrachloroethane-d₂, 100°C) $\delta_{\rm H}$ 9.05 (d, 1H, J = 9.4 Hz), 9.03 (d, 1H, J = 9.4 Hz) 9.01 (d, 1H, J = 9.2 Hz), 8.99 (d, 1H, J = 9.2 Hz), 8.95 (d, 1H, J = 8.7 Hz), 8.91 (d, 2H, J = 9.1 Hz), 8.86 (d, 1H, J = 9.1 Hz), 8.80 (d, 1H, J = 8.6 Hz), 8.27 (d, 1H, J = 1.0 Hz), 8.16 (d, J = 8.9 Hz), 8.08–8.04 (m, 2H), 7.88–7.83 (m, 2H), 7.65 (dd, 1H, J = 8.6, 1.1 Hz), 7.57 (t, 2H, J = 7.6 Hz), 7.46 (t, 1H, J = 7.3 Hz), 2.94 (t, 2H, J = 7.5 Hz), 1.86 (quin, 2H, J = 7.5 Hz), 1.56–1.28 (m, 22 H, overlapped with H₂O), 0.94 (t, 3H, J = 7.0 Hz).

¹³C NMR Not obtained due to low solubility.

Anal Calcd for $C_{46}H_{48}$; C, 91.95; H, 8.05. Found; C, 91.55; H, 8.04.

(2) NMR spectra (Figure S1-1 – S1-24) of compounds synthesized in this study.

Figure S1-1. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of triflate **2** (CDCl₃).

Figure S1-2. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound **3a** (CDCl₃).

Figure S1-3. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound **3b** (CDCl₃).

Figure S1-4. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound **4a** (CDCl₃).

Figure S1-5. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound 4b (CDCl₃).

Figure S1-6. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound (6-decylnaphthalen-1-yl)methanol (CDCl₃).

Figure S1-7. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound (6-tetradecylnaphthalen-1-yl)methanol (CDCl₃).

Figure S1-8. 1 H (600 MHz) and 13 C NMR (151 MHz) spectra of compound 1-bromomethyl-6-decylnaphthalene **5a** (CDCl₃).

Figure S1-9. 1 H (600 MHz) and 13 C NMR (151 MHz) spectra of compound 1-bromomethyl-6-tetradecylnaphthalene **5b** (CDCl₃).

Figure S1-10. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound phophonium salt **6a** (CDCl₃).

Figure S1-11. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound phophonium salt **6b** (CDCl₃).

Figure S1-12. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of compound 7 (CDCl₃).

Figure S1-13. 1 H (600 MHz) and 13 C NMR (151 MHz) spectra of compound 8 (CDCl₃).

Figure S1-14. 1 H (600 MHz) and 13 C NMR (151 MHz) spectra of 1-bromomethyl-6-phenylnaphthalene (CDCl₃).

Figure S1-15. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of phosphonium salt **9** (CDCl₃).

Figure S1-16. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of 1-methyl-7-phenylphenanthrene **12** (CDCl₃).

Figure S1-17. 1 H (600 MHz) and 13 C NMR (151 MHz) spectra of 1-bromomethyl-7-phenylphenanthrene **13** (CDCl₃).

Figure S1-18. 1 H (600 MHz) and 13 C NMR (151 MHz) spectra of 7-phenylphenanthrene-1-carbaldehyde 14 (CDCl₃).

Figure S1-19. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of **PhC10-CHR** (CDCl₃ at 50° C).

Figure S1-20. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of **PhC14-CHR** (1,1,2,2-tetrachloroethane- d_2 at 85°C).

Figure S1-21. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of **PhC10-CHR** (1,1,2,2-tetrachloroethane- d_2 , at 100°C).

Figure S1-22. ¹H (600 MHz) and ¹³C NMR (151 MHz) spectra of **PhC14-PIC** (1,1,2,2-tetrachloroethane-d₂, at 100°C).

Figure S1-23. ¹H (600 MHz) spectrum of **PhC10-FUL** (1,1,2,2-tetrachloroethane-d₂, at 100°C).

Figure S1-24. ¹H (600 MHz) spectrum of **PhC10-FUL** (1,1,2,2-tetrachloroethane-d₂, at 100°C).

(3) UV-Vis absorption and fluorescence spectra of PhCn'-[n]phenacenes in solution (in o-dichlorobenzene) and solid phases (Figure S2).

Figure S2. Absorption (in solution, black), fluorescence (in solution, red), and fluorescence (in solid, blue) spectra of (a) PhCn'-CHR, (b) PhCn'-PIC, and (c) PhCn'-FUL. Full lines are for n' = 10 and dotted lines are for n' = 14. The absorption and fluorescence spectra in solution were measured in *o*-

(4) AFM images of thin films of PhC10-CHR, PhC14-CHR, PhC10-PIC, PhC14-PIC, PhC10-FUL and PhC14-FUL.

Figure S3. AFM images of thin films of (a) PhC10-CHR, (b) PhC14-CHR, (c) PhC10-PIC, (d) PhC14-PIC, (e) PhC10-FUL and (f) PhC14-FUL.

(5) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14-FUL thin-film FETs with SiO₂ gate dielectric (Figures S4 and S5).

Figure S4. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-CHR. (c)Transfer and (d) output characteristics of FET with thin film of PhC14-CHR. The thin films are formed on SiO₂/Si substrate. The FETs of PhC10-CHR and PhC14-CHR refer to the devices which are marked with an asterisk (*) in Table 4.

Figure S5. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-FUL. (c)Transfer and (d) output characteristics of FET with thin film of PhC14-FUL. The thin films are formed on SiO₂/Si substrate. The FETs of PhC10-FUL and PhC14-FUL refer to the devices which are marked with an asterisk (*) in Table 5.

(6) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14-FUL thin-film FETs with ZrO₂ gate dielectric (Figures S6 and S7).

Figure S6. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-CHR. (c)Transfer and (d) output characteristics of FET with thin film of PhC14-CHR. The thin films are formed on ZrO₂/Si substrate. The FETs of PhC10-CHR and PhC14-CHR refer to the devices which are marked with an asterisk (*) in Table 7.

Figure S7. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-FUL. (c)Transfer and (d) output characteristics of FET with thin film of PhC14-FUL. The thin films are formed on ZrO₂/Si substrate. The FETs of PhC10-FUL and PhC14-FUL refer to the devices which are marked with an asterisk (*) in Table 8.