## Supplementary Information

## Fabrication and characterization of thin-film field-effect transistors with alkylphenyl[n]phenacenes ( $\mathrm{n}=4$ - 6)

Yanting Zhang, ${ }^{\text {a }}$ Ritsuko Eguchi, ${ }^{a}$ Hideki Okamoto, ${ }^{\text {b }}$ Kenta Goto, ${ }^{\text {c }}$ Fumito Tani, ${ }^{\text {c }}$ Minoru Yamaji, ${ }^{\text {d }}$ Hidenori Goto, ${ }^{\text {a }}$ Yoshihiro Kubozono ${ }^{\text {a* }}$

a) Research Institute for Interdisciplinary Science, Okayama University, Okayama 7008530, Japan
b) Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-7850, Japan
c) Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 8190395, Japan
d) Division of Molecular Science, Graduate School of Science and Engineering, Gunma University, Ota 373-0057 Japan

## Contents

(1) Detailed synthetic procedures and physical data for new compounds synthesized in this study.
(2) NMR spectra of new compounds synthesized in this study (Figure S1-1~24).
(3) UV-Vis absorption and fluorescence spectra of PhCn '-[n]phenacenes in solution (in $o$ dichlorobenzene) and solid phases (Figure S2).
(4) AFM images of thin films of thin films of PhC10-CHR, PhC14-CHR, PhC10-PIC, PhC14PIC, PhC10-FUL and PhC14-FUL.
(5) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14FUL thin-film FETs with $\mathrm{SiO}_{2}$ gate dielectric (Figures S 4 and S 5 ).
(6) Transfer and output characteristics of $\mathrm{PhC10-CHR}, \mathrm{PhC} 14-\mathrm{CHR}, \mathrm{PhC} 10-\mathrm{FUL}$ and $\mathrm{PhC} 14-$ FUL thin-film FETs with $\mathrm{ZrO}_{2}$ gate dielectric (Figures S6 and S7).

## (1) Experimental details and physical data for samples synthesized in this study.

## Methyl 6-trifluoromethanesulfonyloxy-1-naphthoate 2



To a solution of methyl 6-hydroxy-1-naphthoate $\mathbf{1}(5.0 \mathrm{~g}, 24.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ was dropwise added $\mathrm{Tf}_{2} \mathrm{O}(10.5 \mathrm{~g}, 37.1 \mathrm{mmol})$ at $-80--78^{\circ} \mathrm{C}$. The solution was stirred at $-80-$ $-75^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$. The organic layer was washed successively with water, $1 \mathrm{M} \mathrm{HCl}, \mathrm{NaHCO}_{3}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel (toluene) to afford triflate $2(8.07 \mathrm{~g}, 98 \%)$ as pale brown plates, $\mathrm{mp} 66-66.5^{\circ} \mathrm{C}\left(\mathrm{Lit} .{ }^{\mathrm{S} 1 .} 58-60^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 9.10(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 8.28(\mathrm{dd}, 1 \mathrm{H}, J=7.3,1.2 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H}, j=$ $8.3 \mathrm{~Hz}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=8.3,7.3 \mathrm{~Hz}), 7.49(\mathrm{dd}, 1 \mathrm{H}, J=9.5,2.6 \mathrm{~Hz})$, $4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 167.4,147.3,134.2,133.4,131.6,130.5,129.30$ 127.31, 126.6, 122.1*, 121.3, 119.9*, 119.8, 117.8*, 115.7*, 52.6. Asterisked signals are assigned to $\mathrm{CF}_{3}\left(J_{\mathrm{CF}}=320 \mathrm{~Hz}\right)$.
[S1] Y. Lv, M. Li, S. Cao, L. Tong, T. Peng, L. Wei, H. Xie, J. Ding, and W. Duan, Med. Chem. Commun., 2015, 6, 1375.

## Methyl 6-(1-decynyl)-1-naphthoate 3a



A mixture of troflate $2(1.34 \mathrm{~g}, 4.0 \mathrm{mmol}), 1$-decyne ( $660 \mathrm{mg}, 4.8 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(140$ $\mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathrm{CuI}(20 \mathrm{mg}, 0.11 \mathrm{mmol})$ in ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(25 \mathrm{ml})$ was deaerated three evacuationrefilling with Ar cycles and refluxed for 22 h . The solvent was removed under reduced pressure. The residue was passed through a short silica-gel column (toluene). The crude material was
repeatedly separated by preparative liquid chromatography (silica-gel, hexane/ $\mathrm{AcOEt}=10 / 1$ ) to afford compound $\mathbf{3 a}(1.22 \mathrm{~g}, 94.5 \%)$ as pale brown waxy solid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.16(\mathrm{dd}, 1 \mathrm{H}, J=7.3,1.1 \mathrm{~Hz}), 7.95-$ 7.92 ( 2 H , two signals overlap), 7.58 (dd, $1 \mathrm{H}, J=8.8,1.7 \mathrm{~Hz}$ ), $7.48(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.00(\mathrm{~s}$, 3 H ), 2.46 (t, 2H, $J=7.0 \mathrm{~Hz}$ ), 1.64 (quin, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$ ), 1.48 (quin, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$ ), $1.38-$ $1.23(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.
${ }^{13}$ C NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 167.97,133.67,133.11,131.52,130.75,130.64,130.48$, $127.05,125.88,125.18,122.09,91.88,80.52,52.36,32.00,29.36,29.29,29.12,28.87,22.82$, 19.66, 14.28.

HRMS (FAB) $m / z$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2}$ : 322.1933 . Found. $322.1933\left(\mathrm{M}^{+}\right)$.

## Methyl 6-(1-tetradecynyl)-1-naphthoate 3b



A mixture of triflate $2(2.00 \mathrm{~g}, 6.00 \mathrm{mmol})$, 1-tetradecyne ( $1.80 \mathrm{~mL}, 7.32 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ( $440 \mathrm{mg}, 0.692 \mathrm{mmol}$ ) and $\mathrm{CuI}(133 \mathrm{mg}, 0.70 \mathrm{mmol})$, in diisopropylamine $(30 \mathrm{~mL})$ was refluxed under argon for 16 h . The mixture was concentrated and the residue was separated by activated alumina column chromatography using hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$ as an eluent to give compound 3b as a dark brown oil $(1.31 \mathrm{~g}, 3.46 \mathrm{mmol} \mathbf{A})$ along with a fraction containing the desired compound 3b. The latter was further separated by alumina column chromatography using hexane as an eluent to give additional compound $\mathbf{3 b}(499 \mathrm{mg}, 1.32 \mathrm{mmol}, \mathbf{B})$ as yellow oil. The total yield of compound $\mathbf{3 b}(\mathbf{A}+\mathbf{B})$ was $80 \%(1.81 \mathrm{~g}, 4.79 \mathrm{mmol})$. Yellow oil, ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65$ (quin, $J=7.2, \mathrm{~Hz}, 2 \mathrm{H}), 1.48$ (quin, $J=7.0, \mathrm{~Hz}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 168.0,133.7,133.1,131.5,130.8130 .6,130.5,127.1,125.9,125.2$, 122.1, $91.9,80.6,52.3,32.1,29.82,29.80,29.79,29.7,29.5,29.3,29.1,28.9,22.8,19.7,14.3$. HRMS (FAB) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{2}: 378.2559$. Found: $m / z$ 378.2554.

## Methyl 6-decyl-1-naphthoate 4a



A mixture of compound $\mathbf{3 a}(1.22 \mathrm{~g}, 3.78 \mathrm{mmol})$ and $\mathrm{PtO}_{2}(42 \mathrm{mg}, 0.19 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $\operatorname{AcOEt}(30 \mathrm{ml})$ was vigorously stirred at r.t. under a $\mathrm{H}_{2}$ atmosphere for 16 h . The mixture was filtered through a short silica-gel pad and the filtrate was concentrated under reduced pressure to afford compound $\mathbf{4 a}(1.22 \mathrm{~g}, 99 \%)$ as an off-white waxy solid.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.23(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{hz}), 8.12(\mathrm{dd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 7.95$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.65(\mathrm{brd}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}), 7.47(\mathrm{dd}, 1 \mathrm{H}, J=8.8,1.8 \mathrm{~Hz}), 7.46(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.1,7.3 \mathrm{~Hz}$ ), $4.00(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.69$ (quin, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.40-1.20(\mathrm{~m}$, $14 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 168.29,140.99,134.23,133.06,129.89,129.54,129.51$, $127.03,126.94,125.75,124.58,52.25,35.97,32.039,31.35,29.76,29.74,29.67,29.47,29.46$, 22.83, 14.28.

HRMS (FAB) $m / z$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}: 326.2246$. Found. $326.2236\left(\mathrm{M}^{+}\right)$

## Methyl 6-tetradecyl-1-naphthoate 4b



A mixture of compound $\mathbf{3 b}(1.07 \mathrm{~g}, 2.81 \mathrm{mmol}), \mathrm{PtO}_{2}(60.5 \mathrm{mg}, 0.266 \mathrm{mmol})$ was stirred under hydrogen atmosphere at r.t. for 24 h . The resulting mixture was chromatographed on silica gel using hexane : AcOEt (9:1) to remove the platinum catalyst to afford $\mathbf{4 b}$ ( $942 \mathrm{mg}, 2.46 \mathrm{mmol}$, $87.7 \%$ ). Colorless crystals, m.p. $48.0-48.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 8.94$ (d, $J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.16$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (s.1H), $7.49-7.45$ (m, 2H), $4.01(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.65 (quin, $J=7.1,2 \mathrm{H}$ ), 1.48 (quin, $J=7.0,2 \mathrm{H}$ ) 1.46$1.27(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=7.0, \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 168.2,141.0,134.3$,
133.0, 129.9, 129.5, 127.0, 126.9, 125.8, 124.5, 52.2, 36.0, 32.1, 31.3, 29.84, 29.82, 29.81*, 29.80, 29.74, 29.67, 29.51, 29.47, 22.8, 14.3. IR $\vee_{\max } 3399$ (C=O),3025 (C-H), 3007 (C-H), 2953 (C-H), 2912 (C-H), 2847 (C-H), 1731 (C=O), 1455, 1028 (C-O), 835 (C-H), 758 (C-H) $\mathrm{cm}^{-1}$. Anal. Calcd. for C, 81.62; H, 10.01. Found C, 81.65; H, 9.93.

## Methyl 6-phenyl-1-naphthoate 4b



A mixture of methyl triflate $2(1.00 \mathrm{~g}, 3.0 \mathrm{mmol})$, phenylboronic acid ( $549 \mathrm{mg}, 4.5 \mathrm{mmol}$ ), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(173 \mathrm{mg}, 0.15 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.24 \mathrm{~g}, 9.0 \mathrm{mmol})$ in a mixture of toluene ( 28 ml ), $\mathrm{EtOH}(3 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was degassed by three freeze-pump cycles. The resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 4.5 h under Ar. The organic phase was filtered through a silica-gel pad and concentrated. The residue was chromatographed on silica-gel (toluene) to afford methyl compound $\mathbf{4 c}$ ( $744 \mathrm{mg}, 94 \%$ ) as colorless solid.
$\mathrm{Mp}, 77-78.5^{\circ} \mathrm{C}$ (lit. ${ }^{\mathrm{S} 2} 61.3-62.9^{\circ} \mathrm{C}$ )
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 9.00(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.20(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 8.10-$ 8.07 (m, 2H), 7.90 (dd, 1H, $J=8.8,2.0 \mathrm{~Hz}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.41$ (m, $1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 168.13,140.60,138.89,134.32,133.80,130.67,130.37$, 129.07, 127.77, 127.56, 127.53, 127.05, 126.56, 126.33, 125.10, 52.35.
[S2] P. Álvarez-Bercedo and R. Martin, J. Am. Chem. Soc. 2010, 132, 17352.

## 1-(bromomethyl)-6-decylnaphthalene 5a



To a mixture of $\mathrm{LiAlH}_{4}(284 \mathrm{mg}, 7.48 \mathrm{mmol})$ in THF ( 50 ml ) was dropwise added a solution of compound $\mathbf{4 a}(1.22 \mathrm{~g}, 3.74 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$. The reaction mixture was stirred at r.t. for 17.5 h . The reaction was quenched with water ( 5 ml ) and the THF was removed under reduced pressure. The residue was shaken with a mixture of $\mathrm{AcOEt}(50 \mathrm{ml})$ and $10 \% \mathrm{HCl}(20 \mathrm{ml})$. The organic phase was collected, washed with $\mathrm{NaHCO}_{3}$ aq., dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford (6-decylnaphthalen-1-yl)methanol (1.08 g, 96\%) as an off-white solid.

Mp $48-50^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{H}} 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}$ ), $7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$ ), 7.65 (brs, 1 H ), 7.45 (brd, $1 \mathrm{H}, J=6.7 \mathrm{~Hz}$ ), 7.43-7.39 (2H, d and dd signals overlap), 5.14 (s, 2H), 2.77 $(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.70(q u i n, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.40-1.20(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$. ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 140.70,136.21,134.17,129.77,128.32,128.10,127.24$, 125.52, 124.71, 123.65, 63.97, 36.11, 32.05, 31.52, 29.77, 29.75, 29.69, 29.48 (2C), 22.83, 14.28.

HRMS (FAB) $m / z$ Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}: 298.2297$. Found. $298.2269\left(\mathrm{M}^{+}\right)$

To a solution of (6-decylnaphthalen-1-yl)methanol $(1.08 \mathrm{~g}, 3.62 \mathrm{mmol})$ in dioxane ( 20 ml ) was added $\mathrm{PBr}_{3}(1.95 \mathrm{~g}, 7.24 \mathrm{mmol})$. The mixture was stirred at r.t. for 15 h . The reaction was quenched with sat. $\mathrm{NaHCO}_{3}$. Dioxane was removed under reduced pressure and the residue was extracted with a mixture of toluene ( 50 ml ) and water ( 30 ml ). The insoluble materials were filtered and washed with toluene. The extract and washings were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure to afford 1-(bromomethyl)-6decylnaphthalene 5a(1.04 g, 79\%).

Mp $53-54^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.07(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.66$ (brs, $1 \mathrm{H}), 7.45-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=8.1,7.0 \mathrm{~Hz}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.71$ (quin, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}$ ), $1.41-1.20(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 1510 \mathrm{MHz}\right) \delta_{\mathrm{C}} 141.09,134.38,133.16,129.60,129.50,128.34,127.40$, 127.06, 125.49, 123.69, 36.08, 32.09, 32.05, 31.46, 29.77, 29.74, 29.68, 29.50, 29.48, 22.84, 14.28.

HRMS (FAB) $m / z$ Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29}{ }^{79} \mathrm{Br}$ : 360.1453 . Found. $360.1424\left(\mathrm{M}^{+}\right)$.

## 1-(bromomethyl)-6-tetradecylnaphthalene 5b



A solution of compound $\mathbf{4 b}(300 \mathrm{mg}, 0.786 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(63.6 \mathrm{mg}, 1.68 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 3 h . Then, water $(0.5 \mathrm{~mL})$ was dropwise added to quench the reaction and, subsequently, $10 \%$ aqueous $\mathrm{NaOH}(2 \mathrm{~mL})$ was added. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{MgSO}_{4}$, and concentrated to afford (6-tetradecylnaphthalen-1-yl)methanol (269 mg, $0.759 \mathrm{mmol}, 97 \%$ ) as colorless needles.

Mp $63.0-64.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H})$, 7.46-7.40 (m, 3H), $5.14(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 22 \mathrm{H})$, $0.88(\mathrm{t}, J=6.6, \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{\mathrm{C}} 140.7,136.2,134.2,129.8,128.3$ 128.1, 127.3, 125.5, 124.7, 123.7, 64.0, 36.1, 32.1, 31.5, 29.9, 29.82*, 29.81, 29.75, 29.7, 29.51, 29.49, 22.8, 14.3.

Anal. Calcd. for C, 84.69; H, 10.80. Found C, 84.53; H, 10.49.

To a solution of (6-tetradecylnaphthalen-1-yl)methanol ( $925 \mathrm{mg}, 2.61 \mathrm{mmol}$ ) in dioxane ( 20 $\mathrm{ml})$ was added $\mathrm{PBr}_{3}(1.41 \mathrm{~g}, 5.22 \mathrm{mmol})$. The mixture was stirred at r.t. for 15 h . The reaction was quenched with sat. $\mathrm{NaHCO}_{3}$. Dioxane was removed under reduced pressure and the residue was extracted with a mixture of toluene $(50 \mathrm{ml})$ and water $(30 \mathrm{ml})$. The insoluble materials were filtered and washed with toluene. The extract and washings were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure to afford compound $\mathbf{5 b}$ ( $654 \mathrm{~g}, 60 \%$ ). Mp $69-71^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.07(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.65$ (brs, $1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (dd, $J=8.1,7.1 \mathrm{~Hz}$ ), 4.96 (s, 2H), 2.78 (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$ ), 1.71 (quin, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}$ ), $1.43-1.22(\mathrm{~m}, 22 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 1510 \mathrm{MHz}\right) \delta_{\mathrm{C}} 141.09,134.39,133.16,129.60,129.50,128.34,127.40$, 127.06, 125.50, 123.69, 36.08, 32.07, 31.46, 29.84, 29.82 (4C), 29.81, 29.74, 29.68, 29.51, 29.50, 22.85, 14.29,

HRMS (FAB) $m / z$ Calcd. for $\mathrm{C}_{25} \mathrm{H}_{37}{ }^{79} \mathrm{Br}$ : 416.2079. Found. $416.2078\left(\mathrm{M}^{+}\right)$.
((6-Decylnaphthalen-1-yl)methyl)triphenylphosphonium bromide 6a


A solution of compound $\mathbf{5 a}(900 \mathrm{mg}, 2.49 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(784 \mathrm{mg}, 2.99 \mathrm{mmol})$ in toluene ( 20 ml ) was refluxed for 14 h . The solvent was removed under reduced pressure and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ mixture to afford phosphonium salt $\mathbf{6 a}$ as white powder $(1.50 \mathrm{~g}, 96 \%)$. This compound was used without further purification in the next Wittig reaction.

Mp $158-159^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.68-7.60(\mathrm{~m}, 10 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.43($ brs, 1 H$), 7.41-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.14(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.83(\mathrm{dd}, 1 \mathrm{H}, J=8.7,1.3 \mathrm{~Hz})$, $5.70\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 2.58(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.57$ (quin, $\left.2 \mathrm{H}, J=7.3 \mathrm{~Hz}\right), 1.35-1.20(\mathrm{~m}$, $14 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.37,134.93 / 134.91\left(J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 134.40 / 134.3,\left(J_{\mathrm{CP}}=\right.$ $9.8 \mathrm{~Hz}), 133.75 / 133.73\left(J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.87 / 130.84\left(J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 130.15 / 130.06\left(J_{\mathrm{CP}}=12.4\right.$ $\mathrm{Hz}), 129.71 / 129.66\left(J_{\mathrm{CP}}=6.6 \mathrm{~Hz}\right), 128.84 / 128.81\left(J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right)$, 127.91, 126.99, $125.41 / 125.38\left(J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 123.05,122.87 / 122.81\left(J_{\mathrm{CP}}=9.2 \mathrm{~Hz}\right), 118.06 / 117.49\left(J_{\mathrm{CP}}=85.0\right.$ $\mathrm{Hz}), 35.68,31.98,31.24,29.74,29.73,29.61,29.42,29.26,27.87 / 27.56\left(J_{\mathrm{CP}}=47.3 \mathrm{~Hz}\right), 22.77$, 14.22.

## Triphenyl((6-Tetradecylnaphthalen-1-yl)methyl)phosphonium bromide 6b



A solution of compound $\mathbf{5 b}(600 \mathrm{mg}, 1.44 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(452 \mathrm{mg}, 1.72 \mathrm{mmol})$ in toluene ( 20 ml ) was refluxed for 14 h . The solvent was removed under reduced pressure and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ mixture to afford phosphonium salt $\mathbf{6 b}$ as white powder ( $905 \mathrm{mg}, 92 \%$ ). This compound was used without further purification in the next Wittig reaction.
$\mathbf{M p}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.70-7.62(\mathrm{~m}, 10 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{brs}, 1 \mathrm{H}), 7.44-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.25\left(\mathrm{~d}, 1 \mathrm{H}\right.$, overlapped with $\mathrm{CHCl}_{3}$ signal), $7.18(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.84(\mathrm{dd}$, $1 \mathrm{H}, J=8.7,1.3 \mathrm{~Hz}), 5.77\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right), 2.60(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.56$ (quin, 2H, $J=$ $7.3 \mathrm{~Hz}), 1.35-1.20(\mathrm{~m}, 22 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.38,134.93 / 134.91(\mathrm{JCP}=2.9 \mathrm{~Hz}), 134.47 / 134.40(\mathrm{JCP}=$ $9.8 \mathrm{~Hz}), 133.80 / 133.78(\mathrm{JCP}=2.6 \mathrm{~Hz}), 130.93 / 130.91(\mathrm{JCP}=4.3 \mathrm{~Hz}), 130.16 / 130.08(\mathrm{JCP}=$ $12.4 \mathrm{~Hz}), 129.81 / 129.76(\mathrm{JCP}=7.2 \mathrm{~Hz}), 128.86 / 128.83(\mathrm{JCP}=4.3 \mathrm{~Hz}), 127.94,127.04$, $125.46 / 125.43(\mathrm{JCP}=4.0 \mathrm{~Hz}), 123.08,122.92 / 122.86(\mathrm{JCP}=9.2 \mathrm{~Hz}), 118.18 / 117.62(\mathrm{JCP}=$ 85.0 Hz), 35.72, 32.03, 31.28, 29.82, 29.81, 29.79, 29.77, 29.66, 29.48, 29.31, 27.93/27.61 (JCP $=47.3 \mathrm{~Hz}$ ), 22.81, 14.25.
(6-Phenylnaphthalen-1-yl)methanol 7


To an ice-cooled suspension of $\mathrm{LiAlH}_{4}(307 \mathrm{mmol})$ in THF ( 20 ml ) was added a solution of compound $\mathbf{4 c}(1.41 \mathrm{~g}, 5.39 \mathrm{mmol})$ in THF ( 15 ml ). The resulting mixture was stirred at r.t. for 19.3 h . The reaction was quenched with EtOH and the solvent was removed under reduced pressure. The residue was extracted with a mixture of $\mathrm{AcOEt}(50 \mathrm{ml})$ and $10 \% \mathrm{HCl}(30 \mathrm{ml})$.

The organic phase was collected and the aqueous phase was extracted with $\operatorname{AcOEt}(2 \times 30 \mathrm{ml})$. The combined organic phases were washed with $\mathrm{NaHCO}_{3}$ aq. and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and washed with toluene to afford desired product 7 ( $\mathbf{A} 859 \mathrm{mg}$ ). The washings were concentrated and residual material was separated with silica-gel column (toluene) to afford additional product $7(\mathbf{B} 217 \mathrm{mg})$. The total yield $(\mathbf{A}+\mathbf{B})$ of compound 7 was $1.07 \mathrm{~g}(85 \%)$. Mp: $130-131^{\circ} \mathrm{C}$ (colorless crystals).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.22(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.88(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 7.83(\mathrm{dd}, 1 \mathrm{H}, J=8.6,2.0 \mathrm{~Hz}), 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.37(\mathrm{~m}$, $1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.98,138.69,136.33,134.25,130.55,129.05,129.04$, $127.61,127.53,126.62,126.16,126.02,125.56,124.43,63.90$.

HRMS (FAB) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}, 234.1045$. Found, $m / z 234.1067\left(\mathrm{M}^{+}\right)$.

## 6-Phenyl-1-naphthaldehyde 8



To a solution of compound $7(344 \mathrm{mg}, 1.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added pyridinium chlororchromate (PCC, $629 \mathrm{mg}, 2.92 \mathrm{mmol}$ ). The dark brown mixture was stirred at r.t. for 1 h . The reaction mixture was filtered through a short silica-gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford aldehyde $\mathbf{8}(320 \mathrm{mg}, 92 \%)$.
$\mathbf{M p : ~} 91-92.5^{\circ} \mathrm{C}$ (colorless plates).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta_{\mathrm{H}} 10.41(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.99(\mathrm{dd}, 1 \mathrm{H}, J=7.0,1.1 \mathrm{~Hz}), 7.97(\mathrm{dd}, 1 \mathrm{H}, J=8.8,1.9 \mathrm{~Hz})$, 7.75-7.72 (m, 2H), 7.66 (dd, 1H, $J=8.1,7.1 \mathrm{~Hz}$ ), 7.53-7.49 (m, 2H), 7.44-7.40 (m, 1H), .
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right): \delta_{\mathrm{H}} 193.70,140.42,139.68,136.74,135.63,134.22,131.45$, 129.73, 129.11, 128.80, 127.91, 127.53, 126.23, 125.60, 125.45.

The NMR spectral data were identical with those previously reported. ${ }^{53}$
[S3] Y. Mao, J. Jiang, D. Yuan, X. Chen, Y. Wang, L. Hu, Y. Zhang, Overcoming peri- and ortho-selectivity in $\mathrm{C}-\mathrm{H}$ methylation of 1-naphthaldehydes by a tunable transient ligand strategy, Chem. Sci., 2022, 13, 2900-2908.

## Triphenyl((6-phenylnaphthalen-1-yl)methyl)phosphonium bromide 8



To an ice-cooled solution of 1-hyrdoxymethyl-6-phenylnaphthalene ( $980 \mathrm{mg}, 4.18 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was dropwise added a solution of $\mathrm{PBr}_{3}(2.72 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . Then, the reaction was allowed to warm to r.t. and stirred at r.t. for 2 h . The reaction was quenched with water and the organic phase was collected, washed with water, $\mathrm{NaHCO}_{3}$ aq., and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the residue was passed through a short silica-gel column (toluene) to afford 1-bromomethyl-6phenylnaphthalene ( $1.16 \mathrm{~g}, 93 \%$ ).

Colorless crystals, mp, $143-145^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.92-7.88$ ( $\mathrm{m}, 2 \mathrm{H}$, d and dd signals overlap), 7.76-7.72 (m, 2H), 7.55 (dd, $1 \mathrm{H}, J=7.0,1.0 \mathrm{~Hz}), 7.52-7.49$ (m, 2H), 7.44 (dd, 1H, $J=8.2,7.0$ ). 7.42-7.38 (m, 1H), $5.00(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.82,139.11,134.50,133.37,130.36,130.23,129.09$, 127.90, 127.74, 127.58, 126.81, 126.46, 126.03, 124.47, 31.84.

HRMS (FAB) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{79} \mathrm{Br}$, 296.0201. Found, $m / z 296.0177\left(\mathrm{M}^{+}\right)$.

A solution of 1-bromomethyl-6-phenylnaphthalene ( $1.00 \mathrm{~g}, 3.36 \mathrm{mmol}$ ) and $\mathrm{PPh}_{3}(1.06 \mathrm{~g}, 4.04$ $\mathrm{mmol})$ in toluene ( 40 ml ) was refluxed for 14.5 h . The precipitate formed was collected and washed with toluene to afford phosphonium salt $\mathbf{9}$ as colorless crystals ( $1.79 \mathrm{~g}, 95 \%$ ).

Mp, $271-273^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.82(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.70-7.61(\mathrm{~m}, 10 \mathrm{H}), 7.56-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.46 \mathrm{~m}, 6 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, 1 \mathrm{H}, J=8.6,1.7 \mathrm{~Hz})$, 7.16 (ddd, $1 \mathrm{H}, J=8.0,7.2,0.8 \mathrm{~Hz}$ ).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.25,137.99,134.94^{*}$, $134.92^{*}\left(J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 134.50^{*}$, $134.44^{*}\left(J_{\mathrm{C}-\mathrm{P}}=9.8 \mathrm{~Hz}\right), 133.75^{*}, 133.73^{*}\left(J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 131.57^{*}, 131.54^{*}\left(J_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right)$, $130.68^{*}, 130.64^{*}\left(J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 130.1^{*}, 130.08^{*}\left(J_{\mathrm{C}-\mathrm{P}}=12.4 \mathrm{~Hz}\right), 129.49^{*}, 129.46^{*}\left(J_{\mathrm{C}-\mathrm{P}}=\right.$ $4.3 \mathrm{~Hz}), 128.99,127.68,127.22,126.09,125.86^{*}, 125.84^{*}\left(J_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 125.73,124.12$, $123.20^{*}, 123.14^{*}\left(J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 118.06^{*}, 117.49^{*}\left(J_{\mathrm{C}-\mathrm{P}}=85.3 \mathrm{~Hz}\right), 27.89,27.58\left(J_{\mathrm{C}-\mathrm{P}}=47.3\right.$ Hz ). (The asterisked signals show coupling with ${ }^{31} \mathrm{P}$.)

HRMS (FAB) Calcd. for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{P}^{+}, 479.1929$. Found, $m / z 479.1932\left(\mathrm{M}^{+}\right)$

## 1-Methyl-7-phenylphenanthrene 12



Method 1: To a solution of (o-tolylmethyl)triphenylphosphonium bromide ( $984 \mathrm{mg}, 2.2 \mathrm{mmol}$ ), 3-phentylbenzaldehyde $10(364 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{Bu} 4 \mathrm{NBr}(64 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 $\mathrm{ml})$ was added a solution of $\mathrm{KOH}(1.2 \mathrm{~g}, 21 \mathrm{mmol})$ in water $(1.2 \mathrm{ml})$. The mixture was stirred at r.t. for 15 h . The organic phase was separated, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica-gel (hexane). The obtained oil (438 mg ) was dissolved in cyclohexane ( 500 ml ) and small pieces of $\mathrm{I}_{2}$ was added. The solution was irradiated with black-light lamps ( $16 \times 16 \mathrm{~W}$ ) with air-bubbling for 22 h . The solvent was removed and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was washed with aqueous sodium thiosulfate $(10 \%)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed and the residue was recrystallized from EtOH to afford 1-methyl-7-phenylphenanthrene 12 ( $156 \mathrm{mg}, 29 \%$ for two steps) as colorless plates.

Mp $224-225^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.77(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}$, $J=1.9 \mathrm{~Hz}), 8.00(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.92(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz}), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, 1 \mathrm{H}, J=8.2,7.1 \mathrm{~Hz}), 7.15(\mathrm{n}, 2 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.41(\mathrm{~m}$, $1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR: $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.95,139.19,135.09,132.12,130.97,130.33,129.92$, 129.04, 127.97, 127.57, 127.51, 127.02, 126.61, 126.43, 125.96, 123.71, 123.47, 121.05, 20.11.

Anal: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16}, \mathrm{C}, 93.99 ; \mathrm{H}, ~ 6.01$. Found C, 93.75; H, 5.83.
Method 2: To a solution of phosphonium salt $\mathbf{1 0}(1.18 \mathrm{~g}, 2.31 \mathrm{mmol})$ and $o$-tolualdehyde (263 $\mathrm{mg}, 2.19 \mathrm{mmol})$ and dicyclohexano-18-crown-6 ( $86 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added a mixture of $\mathrm{KOH}(2.6 \mathrm{~g})$ in water $(2.6 \mathrm{ml})$. The mixture was stirred at rt for 14 h . The resulting mixture was washed with water and the organic phase was collected and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the residue was chromatographed (silica gel, hexane). The obtained colorless oil was dissolved in cyclohexane ( 500 ml ) and small pieces of $\mathrm{I}_{2}$ were added. The resulting solution was irradiated with black-light lamps $(16 \times 16 \mathrm{~W})$ with airbubbling for 22 h . The resulting solution was washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ The solvent was removed and the residue was recrystallized from EtOH to afford 1-methyl-6phenylphenanthrene $\mathbf{1 2}$ ( $156 \mathrm{mg}, 29 \%$ for two steps) as colorless plates. The NMR spectral data for the obtained product were the same as those observed for the product produced by the Method 1.

1-Bromomethyl-7-phenylnaphthalene 13


A mixture of compound $12(250 \mathrm{mg}, 0.93 \mathrm{mmol})$, NBS $(164 \mathrm{mg}, 0.93 \mathrm{mmol})$, and BPO $(75 \mathrm{wt} \%$ $30 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(20 \mathrm{ml})$ was refluxed for 16 h . The solvent was removed and the residue was chromatographed on silica gel (toluene). The crude product, $(12: 13=1: 4)$, was
recrystallized from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixture to afford the desired product $\mathbf{1 3}$ as pale brown plates ( $169 \mathrm{mg}, 52 \%$ ).

Mp 201-203 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 8.75(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.74(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.07(\mathrm{~d}, 1 \mathrm{H}$, $J=1.8 \mathrm{~Hz}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 7.94(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz})$, $7.80-7.77$ (m, 2H), 7.66 (dd, $1 \mathrm{H}, J=7.0,0.9 \mathrm{~Hz}$ ), $7.61(\mathrm{t}, 1 \mathrm{H} J=7.8 \mathrm{~Hz}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.39 (m, 1H), 5.03 (s, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 1510 \mathrm{MHz}\right) \delta_{\mathrm{C}} 140.72$. 139.70, 134.07, 132.21, 131.11, 130.02, 129.70, $129.09,128.54,128.12,127.72,127.52,126.71,126.40,126.32,124.29,123.63,122.60,32.18$.

Anal: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Br}, \mathrm{C}, 72.64 ; \mathrm{H}, 4.35$. Found C, 72.52; H, 4.72.

## 7-Phenylphenanthrene-1-carbaldehyde 14



A solution of compound $\mathbf{1 3}$ ( $321 \mathrm{mg}, 0.924 \mathrm{mmol}$ ) and hexamethylenetetramine (HMT) ( 259 $\mathrm{mg}, 1.85 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ was refluxed for 2.5 h . Another portion of HMT ( 130 mg , 0.93 mol ) was added and the resulting mixture was further refluxed for $2 \mathrm{~h} . \mathrm{CHCl}_{3}$ was removed under reduced pressure and the residue was dissolved in $\mathrm{AcOH}(15 \mathrm{ml})$ and water $(5 \mathrm{ml})$. The brown solution was refluxed for 12 . The obtained mixture was diluted with sat. NaCl aq. ( 50 $\mathrm{ml})$ and extracted with $\mathrm{CHCl}_{3}(2 \times 30 \mathrm{ml})$. The extracts were combined, washed with sat. NaH CO3 aq. then water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica-gel $\left(\mathrm{CHCl}_{3}\right)$ to afford phenanthrene carboaldehyde ( $169 \mathrm{mg}, 65 \%$ ) as colorless fine needles.

Mp: $202-204^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta_{\mathrm{H}} 10.53(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~d}, 1 \mathrm{H}, J=9.1), 9.00(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$, $8.76(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 8.11(\mathrm{dd}, 1 \mathrm{H}, J=7.1,1.0 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J$
$=9.1 \mathrm{~Hz}), 7.97(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz}), 7.83(\mathrm{dd}, 1 \mathrm{H}, J=8.2,7.2 \mathrm{~Hz}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.55-7.51 (m, 2H), 7.45-7.41 (m, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right): \delta_{\mathrm{C}} 193.75,140.54,140.12,135.35,132.29,131.83,130.92$, $130.60,130.53,129.22,129.13,128.99,127.85,127.54,126.71,126.61,125.98,123.60$, 122.81.

## 3-Decyl-9-phenylchrysene (PhC10-CHR)



To a mixture of aldehyde $\mathbf{1 5}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ ), phosphonium salt $\mathbf{6 a}(311 \mathrm{mg}, 0.50 \mathrm{mmol})$, and dicyclohexano-18-crown-6 (DC18C6, $20 \mathrm{mg}, 0.055 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added a solution of $\mathrm{KOH}(0.68 \mathrm{~g}, 12 \mathrm{mmol})$ in water $(0.7 \mathrm{ml})$. The mixture was stirred at r.t. for 17 h . Water ( 20 ml ) was added to the resulting mixture. The organic phase was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a short silica-gel column, and concentrated. The residual diarylethene $\mathbf{1 7 a}(224 \mathrm{mg})$ was used for the Mallory photoreaction without purification. The crude diarylethene $\mathbf{1 7 a}$ was dissolved in cyclohexane ( 200 ml ) and small portions of $\mathrm{I}_{2}$ was added. The solution was irradiated with black-light lamps $(6 \times 15 \mathrm{~W})$ for 4 h . The precipitate formed was collected and washed with toluene and EtOH to afford PhC10-CHR as off-white fine plates ( $74.3 \mathrm{mg}, \mathbf{A}$ ). The filtrate was irradiated for 14 h . The second crop of $\mathbf{P h C 1 0 - C H R}$ was collected and washed with toluene and EtOH $(14.8 \mathrm{mg}, \mathbf{B})$. The total yield $(\mathbf{A}+\mathbf{B})$ of PhC10-CHR was 89.1 mg ( $40 \%$ for two steps).
$\mathbf{M p}>300^{\circ} \mathrm{C}$ (colorless plates).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}} 8.83(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.75-8.67(\mathrm{~m}, 3 \mathrm{H}), 8.19$ (brs, $1 \mathrm{H}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$,
$7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.79$ (quin, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$ ), $1.47-1.23(\mathrm{~m}, 14 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}} 141.43,141.16,139.09,132.70,132.63,130.09,129.09$, $128.59,128.22,127.91,127.60,127.55,127.49,126.65,126.17,123.89,123.26,121.90$, $121.38,36.14,32.09,31.57,29.81,29.79,29.73,29.59,29.49,22.83,14.19$.

Anal: Calcd. for $\mathrm{C}_{34} \mathrm{H}_{36}, \mathrm{C}, 91.84 ; \mathrm{H}, 8.16$. Found, C, 91.79; H, 8.25.

## 3-Tetradecyl-9-phenylchrysene (PhC14-CHR)



To a mixture of aldehyde $\mathbf{1 5}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ ), phosphonium salt $\mathbf{6 b}(340 \mathrm{mg}, 0.50 \mathrm{mmol})$, and dicyclohexano-18-crown-6 ( $20 \mathrm{mg}, 0.055 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added a solution of $\mathrm{KOH}(0.68 \mathrm{~g}, 12 \mathrm{mmol})$ in water $(0.7 \mathrm{ml})$. The mixture was stirred at r.t. for 17.5 h . Water $(20 \mathrm{ml})$ was added to the resulting mixture. The organic phase was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a short silica-gel column, and concentrated. The residual diarylethene $\mathbf{1 7 b}$ (248 mg ) was used for the Mallory photoreaction without purification. The crude diarylethene 17b was dissolved in cyclohexane ( 200 ml ) and small portions of $\mathrm{I}_{2}$ was added. The solution was irradiated with black-light lamps ( $6 \times 15 \mathrm{~W}$ ) for 5 h . The precipitate formed was collected and washed with toluene and EtOH to afford PhC14-CHR as off-white fine plates ( $109 \mathrm{mg}, 43 \%$ for two steps).
$\mathbf{M p}:>300^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (1,1,2,2-tetrachloroethane-d $\left.{ }_{2}, 600 \mathrm{MHz}, 85^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}} 8.85(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.76-8.69$ $(\mathrm{m}, 3 \mathrm{H}), 8.22(\mathrm{brs}, 1 \mathrm{H}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.61$ (d, $1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.84$ (quin, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.53-1.27(\mathrm{~m}, 22 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR (1,1,2,2-tetrachloroethane-d $\left.{ }_{2}, 151 \mathrm{MHz}, 80^{\circ} \mathrm{C}\right) \delta_{\mathrm{C}} 141.43,140.78,138.88,132.51$, 132.44, 129.88, 128.98, 128.87, 128.40, 128.17, 127.70, 127.56, 127.52, 127.43, 127.40, $127.39,126.46,126.02,123.76,123.14,121.80,121.23,35.93,31.91,31.26,29.66,29.64$, 29.60, 29.53, 29.45, 29.30, 22.65, 14.07.

Anal: Calcd. for $\mathrm{C}_{38} \mathrm{H}_{44}, \mathrm{C}, 91.14 ; \mathrm{H}, 8.86$. Found, C, 91.13; H, 8.99.

## 3-Decyl-10-phenylpicene (PhC10-PIC)



To a solution of phosphonium salt $7 \mathbf{a}(250 \mathrm{mg}, 0.40 \mathrm{mmol})$ and aldehyde $\mathbf{8}(102 \mathrm{mg}, 0.44 \mathrm{mmol})$ and dicyclohecano-18-crown-6 $(15 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added a solution of $\mathrm{KOH}(500 \mathrm{mg}, 8.9 \mathrm{mmol})$ in water $(0.5 \mathrm{ml})$. The mixture was vigorously stirred at r.t. for 17.5 h. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and water $(10 \mathrm{ml})$ were added to the resulting mixture. The organic phase was collected, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was filtered through a short silica-gel column and concentrated. The residue was dissolved in toluene ( 200 ml ) and a small portion of $I_{2}$ was added. The solution was irradiated with black-light lamps $(6 \times 16 \mathrm{~W})$ for 4 h . The precipitate formed was collected and successively washed with toluene and MeOH to afford PhC10-PIC as off-white fine plates ( $172 \mathrm{mg}, 87 \%$ for two steps).
$\mathbf{M p}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane-d ${ }_{2}, 100^{\circ} \mathrm{C}$ ): $\delta_{\mathrm{H}} 8.99-8.94(\mathrm{~m}, 2 \mathrm{H}), .8 .93(\mathrm{~d}, 1 \mathrm{H}$, $J=8.9 \mathrm{~Hz}$ ), $8.82(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.80-8.76$ (two doublets overlap, 2H), $8.25(\mathrm{~s}, 1 \mathrm{H}), 8.11$ $(\mathrm{d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.05-8.01$ (two doublets overlap, 2H), 7.87-7.82 (m, 3H), $7.64(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.86$ (quin, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.56-1.19(\mathrm{~m}, 14 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}), J=6.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}, 1,1,2,2-$
tetrachloroethane- $\left.\mathrm{d}_{2}, 100^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 141.66,140.83,139.31,132.35,132.32,129.84,128.94$, $128.85,128.83,128.46,128.37,128.18,127.67,127.54,127.40,127.36,126.44,126.15$, $123.74,123.11,122.19,121.87,121.63,121.56,35.93,31.85,31.18,29.56$ (2C), 29.49, 29.41, 29.23, 22.58, 13.94.

Anal Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38}, \mathrm{C}, 92.26 ; \mathrm{H}, 7.74$. Found C, 92.14; H, 7.73.

## 3-Tetradecyl-10-phenylpicene (PhC10-PIC)



To a solution of phosphonium salt $\mathbf{6 b}(272 \mathrm{mg}, 0.40 \mathrm{mmol})$ and aldehyde $\mathbf{8}(102 \mathrm{mg}, 0.44 \mathrm{mmol})$ and dicyclohecano-18-crown-6 $(15 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added a solution of $\mathrm{KOH}(500 \mathrm{mg}, 8.9 \mathrm{mmol})$ in water $(0.5 \mathrm{ml})$. The mixture was vigorously stirred at r.t. for 17.5 h. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and water $(10 \mathrm{ml})$ were added to the resulting mixture. The organic phase was collected, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was filtered through a short silica-gel column and concentrated. The residue was dissolved in toluene ( 200 ml ) and a small portion of $\mathrm{I}_{2}$ was added. The solution was irradiated with black-light lamps $(6 \times 16 \mathrm{~W})$ for 4 h . The precipitate formed was collected and successively washed with toluene and MeOH to afford PhC14-PIC as off-white fine plates ( $183 \mathrm{mg}, 83 \%$ for two steps).
$\mathbf{M p}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- $\mathrm{d}_{2}, 100^{\circ} \mathrm{C}$ ): $\delta_{\mathrm{H}} 8.98-8.94(\mathrm{~m}, 2 \mathrm{H}), .8 .93(\mathrm{~d}, 1 \mathrm{H}$, $J=8.7 \mathrm{~Hz}$ ), $8.82(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.80-8.76$ (two doublets overlap, 2H), $8.25(\mathrm{~s}, 1 \mathrm{H}), 8.11$ (d, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}$ ), 8.05-8.01 (two doublets overlap, 2 H ), $7.87-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=$
$8.2 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.86$ (quin, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.56-1.27(\mathrm{~m}, 22 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}), J=6.0 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane-d ${ }_{2}, 100^{\circ} \mathrm{C}$ ): $\delta_{\mathrm{C}} 141.67,140.84,139.32,132.37$, $132.33,129.85,128.95,128.86,128.83,128.47$, $128.37,128.19,127.68,127.55,127.41$, 127.37, 126.44, 126.15, 123.74, 123.12, 122.19, 121.87, 121.64, 121.57, 35.92, 31.86, 31.17, 29.61 (4C), 29.58, 29.55, 29.482, 29.40, 29.24, 22.57, 13.94.

Anal Calcd. for $\mathrm{C}_{42} \mathrm{H}_{46}, \mathrm{C}, 91.58$; H, 8.42. Found C, 91.48 ; H, 8.41\%.

## 3-Decyl-11-phenyl-fulminene PhC10-FUL



To a mixture of phosphonium salt $\mathbf{6 a}(189 \mathrm{mg}, 0.30 \mathrm{mmol})$, aldehyde $14(90 \mathrm{mg}, 0.32 \mathrm{mmol})$, and dicyclohexano-18-crown-6 $(11 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added an aqueous solution of $\mathrm{KOH}(0.5 \mathrm{~g}$ in 0.5 ml$)$. The mixture was stirred for 22 h . The precipitate was collected, washed with water then EtOH, and dried. The obtained solid (diarylethene 18a) was dissolved in toluene ( 200 ml ) and small pieces of $\mathrm{I}_{2}$ were added. The resulting solution was irradiated with black-light lamps $(6 \times 16 \mathrm{~W})$ for 2 h . The precipitated product was collected by suction filtration and washed with toluene. The crude product was recrystallized from odichlorobenzene to afford $\mathbf{P h C 1 0 - F U L}(108 \mathrm{mg}, 65 \%)$ as off-white plates.
$\mathbf{M P}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (1, 1,2,2-tetrachloroethane-d $\left.{ }_{2}, 100^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}} 9.05(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 9.03(\mathrm{~d}, 1 \mathrm{H}, J=9.4$ Hz) $9.01(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.98(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.96(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.91(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.9 \mathrm{~Hz}), 8.86(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.81(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz})$, 8.08-8.04 (m, 2H), 7.88-7.83 (m, 3H), $7.65(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.57(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.46$
$(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.95(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.88$ (quin, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.57-1.30(\mathrm{~m}, 14 \mathrm{H}$, overlapped with $\left.\mathrm{H}_{2} \mathrm{O}\right), 0.96(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR Not obtained due to low solubility.
Anal Calcd for $\mathrm{C}_{46} \mathrm{H}_{48} ; \mathrm{C}, 92.60 ; \mathrm{H}, 7.40$. Found; C, 92.35; H, 7.24.

## 3-Tetradecyl-11-phenyl-fulminene PhC14-FUL

To a mixture of phosphonium salt $\mathbf{6 b}(115 \mathrm{mg}, 0.21 \mathrm{mmol})$, aldehyde $14(50 \mathrm{mg}, 0.17 \mathrm{mmol})$, and dicyclohexano-18-crown-6 ( $7.5 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added an aqueous solution of $\mathrm{KOH}(0.3 \mathrm{~g}$ in 0.3 ml ). The mixture was stirred for 22 h . The precipitate was collected, washed with water then EtOH , and dried. The obtained solid was dissolved in toluene $(100 \mathrm{ml})$ and small pieces of $\mathrm{I}_{2}$ were added. The resulting solution was irradiated with blacklight lamps $(6 \times 16 \mathrm{~W})$ for 2 h . The precipitated product was collected by suction filtration and washed with toluene. The crude product was recrystallized from $o$-dichlorobenzene to afford PhC14-FUL ( $61 \mathrm{mg}, 61 \%$ ) as off-white plates.

$\mathbf{M P}>300^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, 1,1,2,2\right.$-tetrachloroethane- $\left.\mathrm{d}_{2}, 100^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}} 9.05(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 9.03(\mathrm{~d}$, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}) 9.01(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.99(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.95(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.91$ $(\mathrm{d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.86(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 8.80(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.27(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz})$, 8.16 (d, $J=8.9 \mathrm{~Hz}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{dd}, 1 \mathrm{H}, J=8.6,1.1 \mathrm{~Hz}), 7.57$ $(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.94(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.86$ (quin, $2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 1.56-1.28\left(\mathrm{~m}, 22 \mathrm{H}\right.$, overlapped with $\left.\mathrm{H}_{2} \mathrm{O}\right), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR Not obtained due to low solubility.
Anal Calcd for $\mathrm{C}_{46} \mathrm{H}_{48}$; C, 91.95; H, 8.05. Found; C, 91.55; H, 8.04.
(2) NMR spectra (Figure S1-1 - S1-24) of compounds synthesized in this study.


Figure S1-1. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of triflate $2\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-2. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of compound $\mathbf{3 a}\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-3. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of compound $\mathbf{3 b}\left(\mathrm{CDCl}_{3}\right)$.


Figure $\mathrm{S} 1-4 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of compound $\mathbf{4 a}\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-5. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of compound $\mathbf{4 b}\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-6. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of compound (6-decylnaphthalen1 -yl)methanol $\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-7. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of compound (6-tetradecylnaphthalen-1-yl)methanol $\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-8. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of compound 1-bromomethyl-6decylnaphthalene $\mathbf{5 a}\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-9. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of compound 1-bromomethyl-6tetradecylnaphthalene $\mathbf{5 b}\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-10. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of compound phophonium salt $6 \mathbf{a}\left(\mathrm{CDCl}_{3}\right)$.



Figure S1-11. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of compound phophonium salt $\mathbf{6 b}\left(\mathrm{CDCl}_{3}\right)$.



Figure S1-12. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of compound $7\left(\mathrm{CDCl}_{3}\right)$.



Figure $\mathrm{S} 1-13 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of compound $8\left(\mathrm{CDCl}_{3}\right)$.



Figure $\mathrm{S} 1-14 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of 1-bromomethyl-6phenylnaphthalene $\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-15. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of phosphonium salt $9\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-16. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of 1-methyl-7phenylphenanthrene $12\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-17. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of 1-bromomethyl-7phenylphenanthrene $\mathbf{1 3}\left(\mathrm{CDCl}_{3}\right)$.


Figure $\mathrm{S} 1-18 .{ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of 7-phenylphenanthrene-1carbaldehyde $14\left(\mathrm{CDCl}_{3}\right)$.


Figure S1-19. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz})$ spectra of $\mathbf{P h C 1 0} \mathbf{- C H R}\left(\mathrm{CDCl}_{3}\right.$ at $50^{\circ} \mathrm{C}$ ).


Figure S1-20. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of PhC14-CHR (1,1,2,2-tetrachloroethane- $\mathrm{d}_{2}$ at $85^{\circ} \mathrm{C}$ ).


Figure S1-21. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of PhC10-CHR (1,1,2,2-tetrachloroethane- $\mathrm{d}_{2}$, at $100^{\circ} \mathrm{C}$ ).


Figure S1-22. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 151 MHz ) spectra of PhC14-PIC (1,1,2,2-tetrachloroethane- $\mathrm{d}_{2}$, at $100^{\circ} \mathrm{C}$ ).


Figure S1-23. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ spectrum of $\mathbf{P h C 1 0 - F U L}\left(1,1,2,2\right.$-tetrachloroethane- $\mathrm{d}_{2}$, at $\left.100^{\circ} \mathrm{C}\right)$.


Figure S1-24. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ spectrum of $\mathbf{P h C 1 0 - F U L}\left(1,1,2,2\right.$-tetrachloroethane- $\mathrm{d}_{2}$, at $\left.100^{\circ} \mathrm{C}\right)$.
(3) UV-Vis absorption and fluorescence spectra of $\mathbf{P h C n}$ '-[n]phenacenes in solution (in o-dichlorobenzene) and solid phases (Figure S2) .


Figure S2. Absorption (in solution, black), fluorescence (in solution, red), and fluorescence (in solid, blue) spectra of (a) PhCn'-CHR, (b) PhCn'-PIC, and (c) PhCn'-FUL. Full lines are for $n^{\prime}=10$ and dotted lines are for $n^{\prime}=14$. The absorption and fluorescence spectra in solution were measured in o-
(4) AFM images of thin films of PhC10-CHR, PhC14-CHR, PhC10-PIC, PhC14-PIC, PhC10-FUL and PhC14-FUL.


Figure S3. AFM images of thin films of (a) PhC10-CHR, (b) PhC14-CHR, (c) PhC10-PIC, (d) PhC14-PIC, (e) PhC10-FUL and (f) PhC14-FUL.
(5) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14-FUL thin-film FETs with $\mathrm{SiO}_{2}$ gate dielectric (Figures $\mathbf{S 4}$ and S5).


Figure S4. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-CHR. (c)Transfer and (d) output characteristics of FET with thin film of $\mathrm{PhC} 14-\mathrm{CHR}$. The thin films are formed on $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate. The FETs of $\mathrm{PhC10}-$ CHR and PhC14-CHR refer to the devices which are marked with an asterisk (*) in Table 4.


Figure S5. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-FUL. (c)Transfer and (d) output characteristics of FET with thin film of $\mathrm{PhC} 14-\mathrm{FUL}$. The thin films are formed on $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate. The FETs of $\mathrm{PhC10-}$ FUL and PhC14-FUL refer to the devices which are marked with an asterisk (*) in Table 5.
(6) Transfer and output characteristics of PhC10-CHR, PhC14-CHR, PhC10-FUL and PhC14-FUL thin-film FETs with $\mathbf{Z r O}_{2}$ gate dielectric (Figures S6 and S7).


Figure S6. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-CHR. (c)Transfer and (d) output characteristics of FET with thin film of $\mathrm{PhC} 14-\mathrm{CHR}$. The thin films are formed on $\mathrm{ZrO}_{2} / \mathrm{Si}$ substrate. The FETs of $\mathrm{PhC10-}$ CHR and $\mathrm{PhC14-CHR}$ refer to the devices which are marked with an asterisk (*) in Table 7.


Figure S7. (a) Transfer and (b) output characteristics of FET with thin film of PhC10-FUL. (c)Transfer and (d) output characteristics of FET with thin film of PhC14-FUL. The thin films are formed on $\mathrm{ZrO}_{2} / \mathrm{Si}$ substrate. The FETs of $\mathrm{PhC10}-$ FUL and PhC14-FUL refer to the devices which are marked with an asterisk (*) in Table 8.

