Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Ultrasensitive Photodetectors Based on Graphene Quantum Dot-InSe Mixed-Dimensional Van Der Waals Heterostructures

Shuang Song, Jie Qiao, Mengyan Shen, Guoping Zhang, Fu Feng* and Michael G. Somekh*

S. Song, J. Qiao, M. Y. Shen, G. P. Zhang, F. Feng and M. G. Somekh Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China, 518060

J. Qiao and F. Feng

Zhejiang Lab, Hangzhou 311100, China

M. G. Somekh

Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

E-mail: fufeng@szu.edu.cn; mike.somekh@szu.edu.cn

Figure S1. X-ray diffraction of InSe nanosheets.

Figure S2. **(a)** Low-resolution TEM (LRTEM) photograph of graphene quantum dots (GQDs). **(b)** The size distribution of GQDs.

Figure S3. The thickness of InSe sheet measured by atomic force microscopy (AFM).

Figure S4. Ultraviolet/vis/near-infrared absorption spectra of pure InSe, pure graphene quantum dots (GQDs), and GQDs/InSe mixed-dimensional van der Waals heterostructures.

Figure S5. Schematic energy diagram of the GQDs/InSe MvdWHs without (lift) and with (right) light illumination.

Figure S6. Photon-energy-dependent responsivity of GQDs/InSe MvdWHs and pure InSe photodetectors.

Figure S7. **(a)** Current-time response for pure InSe and GQDs/InSe MvdWHs under different incident power density (0.01 to 0.20 W/cm²). **(b)** Responsivity and **(c)** detectivity of the two devices under different incident laser power density.