The Synergistic Effect of Topography and Stiffness as a Crack

Engineering Strategy for Stretchable Electronics

Sara Mechael, Gloria M. D'Amaral, Yunyun Wu, Kory Schlingman, Brittany Ives, R. Stephen Carmichael, and Tricia Breen Carmichael*

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

*Email: tbcarmic@uwindsor.ca

Figure S1. AFM characterization of PDMS/PVAc_{planar}. (a) AFM image of the PDMS/PVAc_{planar} surface, (b) AFM image of a PVAc film step on glass with the corresponding plot of the film thickness.

Figure S2. Optical microscope images and the corresponding image analysis showing topographical coverage in PDMS/PVAc, glass/PVAc, and PDMS-RM/PVAc when the samples are prepared from PVAc dilutions of (a) 1:1, (b) 3:1, and (c) 5:1 water:glue (v:v). Scale bars are 50 μm.

Figure S3. Plots of change in resistance with elongation of PDMS/PVAc/Au (red squares) and PDMS-RM/Au (blue circles) systems with (a) 100%, (b) 82%, and (c) 48% topographical coverage. Data points in the plots represent average $R/R_0 \pm$ standard deviation of at least 3 samples.

Figure S4. Plots and fits of (R-R₀)/R₀ with increasing mechanical strain of (**a**) PDMS/PVAc_{planar}/Au, (**b**) PDMS-RM₁₀₀/Au (**c**) PDMS-RM₈₂/Au, (**d**) PDMS-RM₄₈/Au, and (**e**) PDMS/PVAc/Au with 100% PVAc coverage (blue circles), 82% PVAc coverage (red squares),

and 48% PVAc coverage (green triangles). Data points in the plots represent average $R/R_0 \pm$ standard deviation of at least 3 samples.

Sensor Material	Gauge Factor	Linear Working	Reference
		Range	
PDMS/PVAc ₄₈ /Au	114	0-95 %	This work
PDMS/PVAc ₈₂ /Au	72	0-100 %	This work
PDMS/PVAc ₁₀₀ /Au	27	0-95 %	This work
Au film on nitrile	62	0 - 40 %	Mechael, S., et al. ¹
butadiene rubber			
AuNPs on PDMS	2.05	0 - 20 %	Lee, J., <i>et al.</i> ²
Au film on PET	1600	0-2%	Lee, T., et al. ³
AgNWs on latex	6.9	0-50 %	Gong, S., et al. ⁴
AgNWs on PDMS	5	0-60%	Amjadi, M., et al. ⁵
AgNWs on PDMS	24.6	0-130 %	Kim, K-H, et al. ⁶
ZnO NWs on polystyrene	116	0-50 %	Xiao, X., et al. ⁷
CNT fibers on Ecoflex	0.56	0 - 200 %	Ryu, S., <i>et al.</i> ⁸
CNTs on ecoflex	1.75	0-100 %	Amjadi, M., et al.9
CNTs on PDMS	0.82	0 - 40 %	Yamada, T., et al. ¹⁰
Graphene nanoribbons	7.9	0-60%	Tan, C., <i>et al.</i> ¹¹
on polyurethane			
Graphene nanocellulose	7.1	0-100 %	Yan, C., <i>et al</i> . ¹²
paper			
Graphene foam	15	0-77 %	Jeong, Y. R., et
			al. ¹³
Graphene foam PDMS	98.66	0-5%	Li, J., <i>et al</i> . ¹⁴
Reduced graphene oxide	754	0-5%	Ye, X., <i>et al</i> . ¹⁵
(rGO) polyethylenimine			
layered nanocomposite			
rGO-PDMS composite	7.2	0-110 %	Zheng, Z., et al. ¹⁶
Graphene/carbon	138	0-16 %	Sun, S., <i>et al</i> . ¹⁷
black/Ni sponge			
Carbon black and PDMS	5.5	0-10 %	Kong, J-H., <i>et al.</i> ¹⁸

Table S1. Gauge factors and working ranges of reported strain sensing systems

References

1. Mechael, S. S.; Wu, Y.; Chen, Y.; Carmichael, T. B. *iScience* **2021**, 24, (6), 102525.

2. Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. *Nanoscale* **2014**, 6, (20), 11932-11939.

3. Lee, T.; Choi, Y. W.; Lee, G.; Kim, S. M.; Kang, D.; Choi, M. *RSC Adv.* **2017**, *7*, (55), 34810-34815.

4. Gong, S.; Lai, D. T. H.; Su, B.; Si, K. J.; Ma, Z.; Yap, L. W.; Guo, P.; Cheng, W. *Adv. Electron. Mater.* **2015**, 1, (4), 1400063.

- 5. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. *ACS Nano* **2014**, 8, (5), 5154-5163.
- 6. Kim, K.-H.; Jang, N.-S.; Ha, S.-H.; Cho, J. H.; Kim, J.-M. *Small* **2018**, 14, (14), 1704232.

7. Xiao, X.; Yuan, L.; Zhong, J.; Ding, T.; Liu, Y.; Cai, Z.; Rong, Y.; Han, H.; Zhou, J.; Wang, Z. L. *Adv. Mater.* **2011**, 23, (45), 5440-5444.

- 8. Ryu, S.; Lee, P.; Chou, J. B.; Xu, R.; Zhao, R.; Hart, A. J.; Kim, S.-G. ACS Nano.
- 9. Amjadi, M.; Yoon, Y. J.; Park, I. *Nanotechnol.* **2015**, 26, (37), 375501.
- 10. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. *Nat. Nanotechnol.* **2011**, 6, (5), 296-301.
- 11. Tan, C.; Dong, Z.; Li, Y.; Zhao, H.; Huang, X.; Zhou, Z.; Jiang, J.-W.; Long, Y.-Z.; Jiang, P.; Zhang, T.-Y.; Sun, B. *Nat. Commun.* **2020**, 11, (1), 3530.
- 12. Yan, C.; Wang, J.; Kang, W.; Cui, M.; Wang, X.; Foo, C.; Chee, K.; Lee, P. *Adv. Mater.* **2014**, 26, (13), 2022-2027.
- 13. Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S.-S.; Ha, J. S. *Adv. Funct. Mater.* **2015**, 25, (27), 4228-4236.
- 14. Li, J.; Zhao, S.; Zeng, X.; Huang, W.; Gong, Z.; Zhang, G.; Sun, R.; Wong, C.-P. *ACS Appl. Mater. Interfaces* **2016**, 8, (29), 18954-18961.
- 15. Ye, X.; Yuan, Z.; Tai, H.; Li, W.; Du, X.; Jiang, Y. *J. Mater. Chem. C* **2017**, *5*, (31), 7746-7752.

16. Zeng, Z.; Seyed Shahabadi, S. I.; Che, B.; Zhang, Y.; Zhao, C.; Lu, X. *Nanoscale* **2017**, 9, (44), 17396-17404.

17. Sun, S.; Liu, Y.; Chang, X.; Jiang, Y.; Wang, D.; Tang, C.; He, S.; Wang, M.; Guo, L.; Gao, Y. *J. Mater. Chem. C* **2020**, 8, (6), 2074-2085.

18. Kong, J.-H.; Jang, N.-S.; Kim, S.-H.; Kim, J.-M. *Carbon* **2014**, 77, 199–207.