Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

For

Blue heteroleptic iridium(III) complexes for OLEDs: simultaneous optimization of color purity and efficiency

Ying Lan,^a Di Liu, ^{a,b*} Jiuyan Li,^{a*} Yongqiang Mei,^a Houru Tian^a

^a State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian

University of Technology, 2 Linggong Road, Dalian, 116024, China.

E-mail: liudi@dlut.edu.cn, jiuyanli@dlut.edu.cn.

^b State Key Laboratory of Luminescent Materials and Devices, South China University of

Technology, Guangzhou, 510640, China.

Contents

- 1. Experimental Section
- 2. Supplemental Tables and Figures

3. References

1. Experimental Section

Synthesis of Ir(III) complexes

Scheme S1. Chemical structures and synthetic routes for Ir1 and Ir2.

Synthesis of iridium complexes Ir1 and Ir2. IrCl₃•3H₂O (0.24 mmol) and the cyclometalating ligand L1/L2 (0.52 mmol) was dissolved in 2-ethoxyethanol/H₂O (6/2 mL). The mixture was stirred in N₂ atmosphere for 24 h at 110 °C. After cooling to room temperature, deionized water (20 mL) was added into the reaction mixture to get the yellow cyclometalated Ir(III) μ -chlorobridged dimer precipitation. The precipitate was collected by filtration and washed with water. Without further purification, the dimer1/dimer2 (0.08 mmol), ancillary ligands L3 (0.22 mmol) and K₂CO₃ (0.24 mmol) in DMF (8 mL) were heated at 100 °C for 12 h in N₂ atmosphere. Finally the solvent was removed under reduced pressure and the residue was extracted with dichloromethane (50 mL). And the product was obtained by column chromatography on silica gel.

Ir1: yellow power, yield: 48%. ¹H-NMR (DMSO- d_6 , 400 MHz, δ [ppm]): 8.09 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.41-7.22 (m, 5H), 7.18 (d, J = 8.0 Hz, 1H), 6.82 (s, 1H), 6.71-6.47 (m, 2H), 6.46-6.30 (m, 2H), 6.10 (d, J = 8.4 Hz, 1H), 5.81 (d, J = 8.4 Hz, 1H), 3.22-2.87 (m, 15H). HRMS (ESI, m/z) : 884.2044 (calc. 884.2049). Anal. Calcd for C₃₇H₃₀F₇IrN₆: C, 50.28; H, 3.42; N, 9.51. Anal. Found: C, 50.16; H, 3.46; N, 9.46.

Ir2: yellow power, yield: 35%. ¹H-NMR (DMSO- d_6 , 400 MHz, δ [ppm]): 8.15 (s, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.40-7.30 (m, 3H), 7.26 (d, J = 6.8 Hz, 3H), 6.76 (s, 1H), 6.54-6.40 (m, 2H), 6.12 (s, 1H), 5.81 (s, 1H), 3.22-2.95 (m, 15H). HRMS (ESI, m/z) : 886.1944 (calc. 886.1954). Anal. Calcd for C₃₅H₂₈F₇IrN₈: C, 47.45; H, 3.19; N, 12.65.

Anal. Found: C, 47.54; H, 3.22; N, 12.60.

2. Supplemental Tables and Figures

 Table S1 Related triplet states of complexes Ir1 and Ir2 calculated from the TD-DFT

method.

Complex	State	<i>E</i> [eV]	Dominant excitation	character	
Ir1	T_1	3.10	H → L (35.2%), H-3→ L+1 (17.8%)	³ MLCT/ ³ LLCT/ ³ LC	
			H-4→ L+1 (14.8%)		
	T_2	3.11	H → L+1 (23.0%), H-3 → L (17.4%),	³ MLCT/ ³ LLCT/ ³ LC	
			$H \rightarrow L+1 (10.0\%)$		
Ir2	T_1	3.21	H → L+1 (42.0%), H-3 → L+1 (25.1%)	³ MLCT/ ³ LLCT/ ³ LC	
FIrpic	T_1	2.91	H-1 → L+2 (28.2%), H → L+2 (13.0%)	³ MLCT/ ³ LLCT/ ³ LC	
			$\mathbf{H} \rightarrow \mathbf{L} (10.3\%)$		

Table S2 Surface distributions for HOMO/HOMO-3 and LUMO/LUMO+1 involved in the transitions for complexes Ir1 and Ir2. H and L denote HOMO and LUMO, respectively.

Table S3 Calculated energies of the lowest triplet excited states (T₁) for complexes

Ir1 and Ir2.

Complex	$\Delta E (T_1-S_0)$ [cm ⁻¹ , nm] ^a	
Ir1	23529, 425	
Ir2	23474, 426	

^a Energy difference between the lowest triplet excited state (T₁) and the ground state

(S₀) at the corresponding optimized geometries.

Table S4 Comparison between the state-of-the-art blue OLEDs with \mbox{CIE}_{y} around 0.2

Emitters	\Box EL (λ_{max} ,nm)	EQE ^a [%]	CIE (x, y)	Ref.
(dfpysipy) ₂ Ir(pic)	-	29.0/23.2	(0.14, 0.19)	1
(dfpysipy) ₂ Ir(mpic)	-	31.9/24.7	(0.14, 0.19)	1
(dfpysipy) ₂ Ir(fptz)	-	19.5/-	(0.15, 0.18)	1
pic	-	15.5/-	(0.14, 0.18)	2
bor	-	22.6/-	(0.15, 0.20)	2
Ir(pep) ₃		7.6/-	(0.15, 0.19)	3
Ir(pmp) ₃		10.8/-	(0.15, 0.19)	3
Ir(Me-pep) ₃	450	15.2/-	(0.15, 0.19)	3
[Ir(mimb)(pzpyOph ^F)]	-	19.7/-	(0.15, 0.24)	4
[Ir(mimb)(pzpy ^{Bu} Oph ^F)]	-	20.7/-	(0.15, 0.24)	4
FCNIr	454	20.4 / 11.9	(0.14, 0.19)	5
FCNIrpic	-	25.1/23.1	(0.14, 0.18)	6
Ir(dbfmi)	-	18.6/ 6.2	(0.15, 0.19)	7
(fpmi)2Ir(dmpypz)	458	17.1/ 15.1	(0.13, 0.16)	8
(mpmi)2Ir(dmpypz)	464	15.4/ 13.6	(0.13, 0.18)	8
[Ir(dfpypy) ₂ (POXD)]	-	6.0/-	(0.16, 0.20)	9
m-IrS ^{Me}	457	17.1/-	(0.14, 0.19)	10
TzIr	458	27.8/24.4	(0.144, 0.177)	11
Ir1	462	28.0/20.8	(0.16, 0.21)	This work
Ir2	465	16.4/12.9	(0.16, 0.20)	This work

known in literatures and the OLEDs of this work.

 $^{\rm a}$ Values are given in the order of maximum and then at 1000 cd m $^{\rm -2}.$

Fig. S1 PL spectra of complexes FIrpic in CH_2Cl_2 solution (10⁻⁵ mol L⁻¹) at RT.

Fig. S2 PL spectra of Ir1and Ir2 in the 5 wt % doped PPF films.

Fig. S3 Transient PL decay curves of Ir1 and Ir2 in 5 wt% doped PPF films. (excited at 380 nm).

Fig. S4 The performance of the reference device based on FIrpic: (a) EL spectra (b) current density-voltage-brightness (*J-V-B*) characteristics and (c) CE and PE vs luminance curves and (d) EQE-luminance curves.

3. References

- H. Shin, Y. H. Ha, H. G. Kim, R. Kim, S. K. Kwon, Y. H. Kim and J. J. Kim, *Adv Mater*, 2019, **31**, e1808102.
- Y.-J. Cho, S.-Y. Kim, J.-H. Kim, D. W. Crandell, M.-H. Baik, J. Lee, C. H. Kim,
 H.-J. Son, W.-S. Han and S. O. Kang, *J. Mater. Chem. C*, 2017, 5, 4480-4487.
- 3 Z. Chen, L. Wang, S. Su, X. Zheng, N. Zhu, C. L. Ho, S. Chen and W. Y. Wong, ACS Appl. Mater. Interfaces, 2017, 9, 40497-40502.
- H. H. Kuo, Y. T. Chen, L. R. Devereux, C. C. Wu, M. A. Fox, C. Y. Kuei, Y. Chi and G. H. Lee, *Adv Mater*, 2017, 29.

- 5 H. S. Son and J. Y. Lee, *Org. Electron.*, 2011, **12**, 1025-1032.
- 6 S. O. Jeon, S. E. Jang, H. S. Son and J. Y. Lee, *Adv Mater*, 2011, 23, 1436-1441.
- H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz and J. Kido, *Adv Mater*, 2010, 22, 5003-5007.
- K. Y. Lu, H. H. Chou, C. H. Hsieh, Y. H. Yang, H. R. Tsai, H. Y. Tsai, L. C.
 Hsu, C. Y. Chen, I. C. Chen and C. H. Cheng, *Adv Mater*, 2011, 23, 4933-4937.
- W. Qu, F. Zhang, S. Liu, D. Wei, X. Dong, B. Yu, W. Lu, C. Zhang, S. Li, Z. Li,
 B. Wei, B. Zhai and G. Cao, *Dyes Pigm.*, 2017, 145, 116-125.
- B.-S. Yun, S.-Y. Kim, J.-H. Kim, H.-J. Son and S. O. Kang, J. Mater. Chem. C, 2021, 9, 4062-4069.
- C. H. Ryu, J. Lim, M. B. Kim, J. H. Lee, H. Hwang, J. Y. Lee and K. M. Lee, *Adv. Opt. Mater.*, 2021, 9, 2001957.