Supplementary Information

Advanced Atomic Layer Deposition: Metal Oxide Thin Film Growth Using the Discrete Feeding Method

Jae Chan Park,^a Chang Ik Choi,^a Sang-Gil Lee,^b Seung Jo Yoo,^b Ji-Hyun Lee,^b Jae Hyuck Jang,^b Woo-Hee Kim,^a Ji-Hoon Ahn,^a Jeong Hwan Kim,^{*,c} and Tae Joo Park^{*,a}

^aDepartment of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea

^bCenter for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Republic of Korea

^cDepartment of Advanced Materials Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

*E-mail: tjp@hanyang.ac.kr; jkim@hanbat.ac.kr

Fig. S1 (a) Nominal growth rate of the HfO_2 film as a function of the Hf precursor pulse time. Comparison of the (b) growth rate, (b) nominal density, and (c) refractive index of HfO_2 films with various feeding time of precursor.

Fig. S2 Time-dependent pressure variation during the feeding of precursor in the control and DF-ALD processes. The integrated area value shows the exposure amount of the precursor in each process.

Fig. S3 XRR results for control and DF-ALD HfO_2 films with the thickness of ~ 10 nm.

ARTICLE

Fig. S4 C 1s core level XPS spectra of HfO₂ films grown via control and DF-ALD processes.