Supporting Information: Thermally robust Al₂O₃-La₃Si₆N₁₁:Ce³⁺ composite phosphor-in-glass (PiG) films for high-power and brightness laser-driven lighting

Min-Hang Huang ^a, Qiang-Qiang Zhu ^a, Shuxing Li ^b, Yue Zhai ^a, Hong Zhang ^a, Le Wang ^a,*, and Rong-Jun Xie ^b,*

^a College of Optics and Electronic Technology, China Jiliang University, Hangzhou 310018, China

^b Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China

*Corresponding Author:

Email:

<u>calla@cjlu.edu.cn</u> (Le Wang) <u>rjxie@xmu.edu.cn</u> (Rong-Jun Xie)

Figure S1 Fabrication of the Al₂O₃-LSN:Ce³⁺composite PiG film on a 1DPC-coated

sapphire substrate.

Figure S2 Schematics of measuring the optical properties of laser-driven white

light in a transmissive configuration.

Figure S3. XRD patterns of glass frits, LSN:Ce³⁺, Al₂O₃ particles, single crystal sapphire, and the composite PiG film.

Figure S4 Elemental composition of LSN: Ce³⁺ phosphor particles quantified by the

EDS.

Figure S5 Luminous flux and luminous efficiency of the M3G2A5-50 sample.