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S1. Residual heteronuclear dipolar coupling between spin 1/2 and quadrupolar nuclei

Here, we review the theory behind the residual dipolar coupling to a spin 1/2 nucleus from N half-integer

quadrupolar nuclei under MAS. In this work, the spin 1/2 nucleus corresponds to the 29Si nuclide and the

quadrupolar nuclei correspond to the 7Li, 23Na, 39K, 133Cs, and 27Al nuclides.

We start by writing the first-order Hamiltonian in the rotating frame as
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where the Ik represent the half-integer quadrupolar nuclei and S represents the spin 1/2 nucleus. In this

Hamiltonian, the interactions, as indicated in the equation above, are the quadrupolar coupling, the nuclear

shielding, the heteronuclear dipolar coupling to the spin 1/2 nucleus, and the homonuclear dipolar coupling

between the quadrupolar nuclei. See reference 1 for definitions of the individual terms and symbols in

this Hamiltonian. For this treatment, we do not need to include the second-order perturbation theory

contributions[1] to this Hamiltonian. Of the second-order contributions, the spin 1/2 spectrum is only

affected by the cross-term between the heteronuclear dipolar and quadrupolar couplings, which is linear in

Ŝz and readily removed by the π-pulse train. As we show below, it is the homonuclear dipolar coupling

that is responsible for creating the residual heteronuclear dipolar couplings that dominate the 29Si coherence

lifetimes in this study.

Preprint submitted to Elsevier August 22, 2022

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2022



Thus, the first step in understanding the residual heteronuclear dipolar coupling of 29Si to a quadrupolar

nucleus under MAS begins with the strong homonuclear dipolar coupling between the quadrupolar nuclei.

Without this term, the Hamiltonian in Eq. (1) is inhomogeneous as defined by Maricq and Waugh[2], i.e.,

during sample rotation, the Hamiltonian commutes with itself at all times during the rotor period. For an

inhomogeneous Hamiltonian, one can show that all the anisotropic interactions, including the heteronuclear

dipolar coupling, average to zero under magic-angle spinning. It is the so-called flip-flop term in the strong

homonuclear dipolar coupling Hamiltonian, i.e.,
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which makes the total Hamiltonian homogeneous, i.e., it does not commute at all times during sample

rotation and leads to the residual heteronuclear dipolar coupling to the 29Si nuclei under MAS.

S1.1. Truncation of the Strong Homonuclear Dipolar Coupling by the 1st-order Quadrupolar Coupling

The strong homonuclear couplings between quadrupolar nuclei are partially reduced to weak ones when

the quadrupolar nuclei have a strong first-order quadrupolar coupling. That is, the flip-flop terms associated

with the satellite transition operators are truncated out of the Hamiltonian. To illustrate this effect, we

expand the flip-flop terms, Î1,+Î2,− and Î1,−Î2,+, out in terms of fictitious spin 1/2 operators[3, 4] in the

spin I = 3/2 case, where

Îz = 3Î1−4
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1−2
2,+ +2

√
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One can show, by moving the strong homonuclear dipolar coupling Hamiltonian into the interaction frame

of the first-order quadrupolar Hamiltonian, that all the terms involving the satellite transitions undergo fast

oscillations and can be truncated away to first-order. Returning to the rotating frame leaves
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1,z Î
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Thus, only the flip-flop terms associated with the central transition survive in the presence of a large first-

order quadrupolar coupling. In other words, the homonuclear dipolar couplings involving satellite transitions

are weak, while the homonuclear dipolar coupling between central transitions remains strong.

S1.2. Truncation of flip-flop terms by large shift anisotropy

In the case of 133Cs, there is also the possibility of large nuclear shielding (or shift) anisotropies, due to

the greater number of electrons in the closed shell configuration of the Cesium cation. One can similarly

move into the interaction frame of the first-order nuclear shielding Hamiltonian and show that all the flip-flop

terms, including the central transition, are eliminated to first-order, making the homonuclear dipolar coupling

between all transitions weak. Without any flip-flop terms, the rotating frame Hamiltonian is inhomogeneous,

and all anisotropic contributions average to zero under MAS. This mechanism for eliminating residual dipolar

couplings can be particularly effective in paramagnetic samples.[5]

S1.3. Residual Heteronuclear Dipolar Coupling to Quadrupolar Nuclei under MAS

With only a strong homonuclear dipolar coupling between central transitions of the quadrupolar nuclei

remaining, we can separate the Hamiltonian into inhomogeneous and homogeneous terms,

Ĥ = Ĥinhom + Ĥhom, (8)

depending on whether the term involves the central transition operators of the quadrupolar nuclei.

In the spin 3/2 case, where we have

T̂2,0(I) = Î1−2
z − Î3−4

z , (9)
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we obtain
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and
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Under MAS, the Hamiltonian becomes time-dependent,

Ĥ(t) = Ĥinhom(t) + Ĥhom(t). (12)

Using an Average Hamiltonian Theory (AHT) expansion[2], all the anisotropic terms are eliminated in the

zeroth-order term,

H(0) =
1
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Ĥ(t)dt = −
∑
k

ω0σiso,kÎk,z, (13)
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the leading term in an Average Hamiltonian Theory (AHT) expansion[2] are the cross-terms of the homonu-

clear dipolar coupling with the heteronuclear dipolar coupling—and also the nuclear shielding terms,
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For convenience we define
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Ŝz Î
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The AHT term becomes
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which expands to
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Ŝz. (36)

Not only are the weak homonuclear dipolar coupling terms involving the satellite transition completely

removed under MAS, but also the parts of the heteronuclear dipolar coupling involving the satellite transition.

Most importantly, the parts of the heteronuclear dipolar coupling involving the central transition operators

are partially removed with MAS, with the residual heteronuclear dipolar coupling line width coming from the

central transition cross-terms with the homonuclear dipolar coupling. It is these cross-terms that dominate

the echo-train decay, which is proportional to

ωIId ω
IS
d
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=

1

ωR
·
(µ0

4π

)2

· γ
2
I~
r3
II

· γIγS~
r3
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. (37)

Thus, the key factors to consider when interpreting the variations in the 29Si coherence lifetime distributions

in the alkali silicate glasses are the size of the gyromagnetic ratio for the quadrupolar nuclei of the alkali

cation, the distance between alkali cations, and the distance between the alkali cations and the 29Si nuclides.

This is why the 29Si coherence lifetimes are particularly sensitive to phase separation since the stronger

homonuclear dipolar couplings between alkali nuclides in the alkali-rich phases “amplify” the heteronuclear

dipolar coupling to 29Si in this cross term.

S1.4. Finite π-pulse effects

The combined effect of MAS and a π-pulse train can be analyzed using a second averaging approach.[6]

In this approach, the first average is calculated over the shorter rotor period, and the second average is

calculated over the longer π-pulse period. While the residual dipolar coupling averages to zero in a simple

AHT treatment that assumes infinitely short π pulses, an AHT treatment using finite length π-pulses shows

that some residual dipolar coupling terms remain.[7]

S2. Chemical Shift Mode Analysis

Chemical shift modes for Q3 and Q4 sites were determined from a least-squares analysis of the isotropic

1D MAS spectrum, obtained from the Fourier transform of the first collected echo of each measurement, to

the function
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3

)
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(
1

2

(Ω4 − Ω)2

σ2
4

)
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where Ωn is the mean position, σn is the standard deviation, and An is the amplitude for the Qn resonance.

The solid black lines and grey dashed lines shown in Figure 2 represent the experimental spectrum and the

best fit to this function. The best-fit parameters are given in Table S1. An accurate ratio of Q3 to Q4 site

populations cannot be gained from this analysis because of differential echo train lifetimes.

Q4 Q3 R2

Dataset Ω4 /ppm σ4 /ppm A4 Ω3 /ppm σ3 /ppm A3

5Li:95Si −110.9 4.509 61830 −93.2 7.170 24760 0.93

10Li:90Si −110.9 4.453 41120 −92.4 6.834 39350 0.91

7Li:2Al:91Si −110.7 4.312 71140 −99.3 8.712 38870 0.96

5Na:95Si −110.3 4.629 88680 −93.9 5.050 36810 0.96

5K:95Si −110.3 4.544 78870 −97.5 3.857 21850 0.95

5Cs:95Si −110.1 4.450 76150 −99.4 3.206 21570 0.94

10Cs:90Si −108.9 4.390 86000 −98.6 3.932 53930 0.96

7Cs:2Al:91Si −108.2 5.273 66700 −98.4 3.471 23770 0.94

Table S1: Best-fit parameters obtained from a least-squares analysis of the experimental 1D MAS spectra of the first echo of

each sample to the sum of two Gaussian functions that represent the Q3 and Q4 sites. Here, Ωn is the mean position, σn is

the standard deviation, and An is the amplitude for the Qn resonance.
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Dataset σnoise β r σresiduals

5Li:95Si 1110.521 0.11602 18 1526

10Li:90Si 1109.108 0.03808 18 1174

7Li:2Al:91Si 1194.356 0.03808 15 1299

5Na:95Si 1089.445 0.03808 18 1246

5K:95Si 1085.251 0.08003 18 1290

5Cs:95Si 1407.443 0.01250 18 1252

10Cs:90Si 1270.825 0.03808 14 1228

7Cs:2Al:91Si 1163.954 0.03808 14 1312

Table S2: Inverse Laplace parameters. Here, σnoise is the standard deviation of the noise in the datasets, β is the hyperparameter

that promotes sparsity in the solution, r is the truncation index, and σresiduals are the dataset residuals after the fit. All inversions

performed using nλ−1 = 32 with a super sampling of 20. The hyperparameter β was determined using 5-fold cross-validation.

Figure S1: Photographs of the 5Na:95Si, 5Li:99Si, and 10Li:90Si glasses. The 10Li:90Si glass exhibits strong opalescence,

indicating a phase separation that forms spatial domains on the order of 200 nm or higher. All other glasses in this study

exhibit no opalescence, consistent with any phase separation occurring below an optical wavelength limit of ∼ 200 nm.

S9



10 20 30 40 50 60 70

d=
2.
49

14

d=
4.
05

3

d=
2.
38

71

5.0

x103

20.0

25.0

10.0

C
ou

nt

00-039-1425> Cristobalite - SiO2

15.0

10 20 30 40 50 60 70

5.0

x103

20.0

25.0

10.0

C
ou

nt

15.0

(A)

(B)

Figure S2: X-ray diffraction of the (A) 5Li:95Si and (B) 10Li:90Si glass samples. The 10Li:90Si composition in (B) shows signs

of cristobalite crystallization.
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