Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Pentagonal 2D Layered PdSe₂-based Synaptic Device with Graphene Floating Gate

Eunpyo Park^{1,2‡}, Jae Eun Seo^{3,4‡}, Gichang Noh¹, Yooyeon Jo¹, Dong Yeon Woo¹, In Soo Kim⁵, Jongkil Park¹, Jaewook Kim¹, YeonJoo Jeong¹, Suyoun Lee¹, Inho Kim¹, Jong-Keuk Park¹, Sangbum Kim², Jiwon Chang^{3,4}* and Joon Young Kwak^{1,6}*

¹Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

²Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea

³Department of System Semiconductor Engineering, Yonsei University, Seoul 03722, Republic of Korea

⁴Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

⁵Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

⁶Division of Nanoscience and Technology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea

*Correspondence to: jiwonchang@yonsei.ac.kr, jykwak@kist.re.kr

[‡]These authors contributed equally to this work.

Supporting Information

Figure S1. TEM cross-section view with intensity profile of graphene and $PdSe_2$. a) TEM crosssection view image of floating gate memory based on $PdSe_2$. b) The intensity line profile of graphene across the yellow boxed area in Fig. S1a. This shows the layer spacing around 0.35 nm.¹ c) The graph of intensity line profile in red boxed area in Fig. S1a. This presents the $PdSe_2$ have the interplanar spacing around 0.4 nm.²

Figure S2. The expanded output curves of Fig. 2a at gate voltages of 0 V and -5 V, respectively.

Figure S3. Transfer curves of the fabricated devices with the thin (2.36 nm) and the thick (8.52 nm) PdSe₂ flakes, respectively. (a) Optical microscope image of the thick PdSe₂ flake before fabricated floating gate memory. (b) Transfer curves of floating gate memory. Black line represents the transfer curve of the thick PdSe₂ devices which has smaller On/Off ratio and higher off conductance than floating gate memory based on the thin PdSe₂ flake (red line). This result indicates that the thin PdSe₂ is a proper selection to fabricate the floating gate memory.

Figure S4. Retention characteristics during 10^3 s are demonstrated at PdSe₂ based floating gate memory. The drain currents are measured at 0 V of V_G with 1 V of V_{DS}. Three bits of states are well isolated, indicating the potential usage of PdSe₂ floating gate memory for multi-bit memory devices.

Figure S5. Dynamic range study with various gate voltages. a) A PD curve of $PdSe_2$ based floating gate memory with +13 V, 1 ms pulses. Drain-source currents (I_{DS}) are measured at $V_G =$ 0 V with $V_{DS} = 1$ V. b) Boxplot of dynamic ranges at three different V_G . 10 times of dynamic ranges were measured at each V_G . c, d) Measured I_{DS} at different V_G during weight potentiation and depression processes, respectively.

REFERENCES

- 1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, *Science*, 2004, **306**, 666-669.
- A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan and K. Xiao, J. Am. Chem. Soc., 2017, 139, 14090-14097.