Supplementary Information

for

SnSe₂ monolayer with square lattice structure: A promising p-type thermoelectric material with indirect bandgap and low lattice thermal conductivity

Shuwei Tang*, a,b Mengxiu Wu,a Shulin Bai,a Dongming Luo,a Jingyi Zhang,a Da Wan,a Xiaodong Lia

^aCollege of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China.

^bFaculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.

Corresponding author:

Shuwei Tang E-mail: tangsw911@nenu.edu.cn

College of Materials Science & Engineering
Liaoning Technical University
Zhonghua Road. #47
Fuxin, Liaoning
123000, China

Tel/Fax: +86-418-5110098

Contents

1.	Figure S1. The snapshots of AIMD simulations of the SnSe ₂ monolayer at 300K	
	and 900K	
2.	Figure S2. The anharmonic scattering rates, isotopic scattering rates and boundary	
	scattering rates of the SnSe ₂ monolayer	
3.	Figure S3. The Phase spaces for absorption and emission processesPage S5	
4.	Table S1. The carrier mobility and relaxation time for electrons and holes of S	
	monolayer at 300, 500, 700 and 900KPage S6	

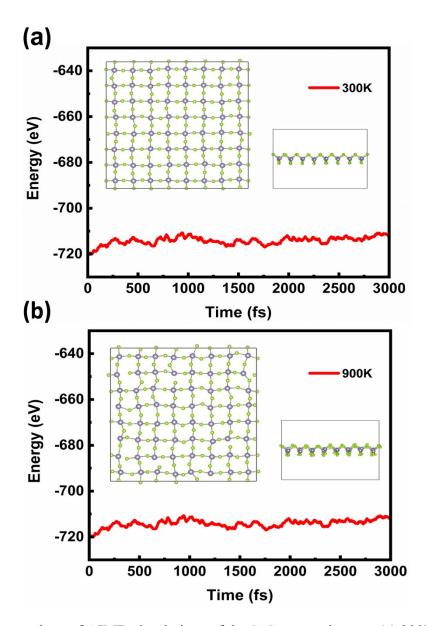


Figure. S1. The snapshots of AIMD simulations of the $SnSe_2$ monolayer at (a) 300K and (b) 900K. The black and green balls represent the Sn and Se atoms, respectively.

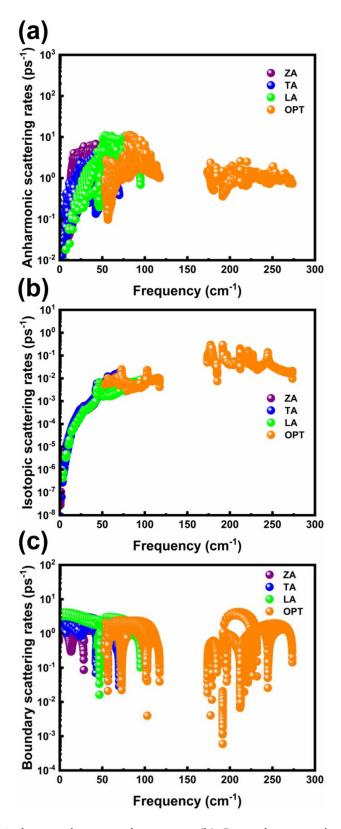


Figure.S2. (a) Anharmonic scattering rates, (b) Isotopic scattering rates, and (c) Boundary scattering rates of SnSe₂ monolayer.

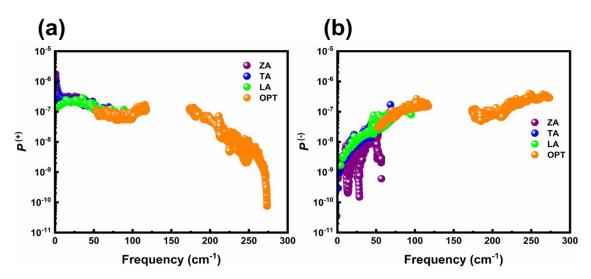


Figure S3. Phase spaces for (a) absorption and (b) emission processes of $SnSe_2$ monolayer.

Table S1. The carrier mobility (μ , cm²V⁻¹s⁻¹) and relaxation time (τ , ps) for electrons and holes of SnSe₂ monolayer at 300, 500, 700 and 900K.

Temperature	Carriers	$\mu_{\rm 2D} ({\rm cm^2/V \cdot s})$	τ (ps)
2007	hole	71.28	0.063
300K	electron	115.39	0.053
500V	hole	42.77	0.038
500K	electron	69.24	0.032
700K	hole	30.55	0.027
/00K	electron	49.45	0.023
900K	hole	23.76	0.021
900 K	electron	38.46	0.018