Supplementary Information for

Superior piezoelectricity and resistivity in CaBi₂Nb₂O₉ high-

temperature piezoelectric ceramics: Synergy

of structural distortion and weak textured

C. B. Pan^{a,b}, G. C. Zhao^{a,b}, S. M. Li^{a,b}, X.L. Wang^{a,b}, J. M. Z. Wang^{a,b}, M. Tao^{a,b}, X. K. Zhang^c, C. Yang^{d,e}, J. P. Xu^c, W. Yin^c, L. H. Yin^a, W. H. Song^a, P. Tong^a, X. B. Zhu^a, J. Yang^{a,*}, and Y. P. Sun^{a,f,g}

a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of

Sciences, Hefei 230031, People's Republic of China

b University of Science and Technology of China, Hefei 230026, People's Republic of China

c Spallation Neutron Source Science Center, Dongguan 523803, China

d Department of Chemistry, University of Warsaw, 02093, Warsaw, Poland

e European Spallation Source, 22484, Lund, Sweden.

f High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's

Republic of China

g Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

Corresponding Author E-mail: jyang@issp.ac.cn (J. Yang)

Fig. S1 (a) Raman patterns of CaBi₂Nb₂O₉-*x* wt% B₂O₃ ceramics at room temperature.
(b) Lorenz peak fitting of Raman pattern for CaBi₂Nb₂O₉-0.25 wt% B₂O₃ ceramics.
Wave number of Raman peaks with (c) *v*1, *v*2, *v*3 and (d) *v*4 and *v*5.

Fig. S2 Arrhenius plots of all the samples.

		CBNO				CBNO-0.25wt% B ₂ O ₃			
atom	site	x	у	Z	Occ	x	у	Z	Occ
Ca1	4	0.253	0.745	0.5	0.891	0.245	0.739	0.5	0.858
Bi1	4	0.253	0.745	0.5	0.109	0.245	0.739	0.5	0.142
Ca2	8	0.260	0.734	0.701	0.038	0.249	0.744	0.700	0.085
Bi2	8	0.260	0.734	0.701	0.962	0.249	0.744	0.700	0.915
Nb	8	0.280	0.255	0.585	1	0.282	0.227	0.583	0.999
01	4	0.314	0.164	0.5	1	0.302	0.152	0.5	1
O2	8	0.295	0.318	0.656	1	0.311	0.314	0.657	1
O3	8	0.485	0.501	0.249	1	0.513	0.503	0.247	1
04	8	0.511	0.537	0.562	1	0.538	0.531	0.565	1
05	8	0.602	0.055	0.584	1	0.610	0.04	0.586	1
В	8					0.282	0.227	0.583	0.001

Table S1. Atomic coordinates of pure CBNO and CaBi₂Nb₂O₉-0.25 wt% B₂O₃.