Supporting Information

P- and N-Dopable Ambipolar Bulk Heterojunction Thermoelectrics Based on Ladder-Type Conjugated Polymers

Qiang He,†,1,3 Teck Lip Dexter Tam,†,*2 Xue Qi Koh,3 Nguk Neng Tham,3 Hong Meng,*4,5 Wei Huang,*1 Jianwei Xu,*2,3,6

1 Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xian 710072, P. R. China.

2 Institute of Sustainability for Chemical, Engineering and Environment (ISCE²), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Singapore.

4 School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072 P. R. China.

5 School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055 P. R. China.

6 Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

General Information:

All commercially available reagents were purchased from Sigma-Aldrich Chemical Co. PBBTL and BBL were synthesized according to previous reports.1, 2 BV*+ dopant solution were prepared according to previous report.1 UV-Vis-NIR absorption spectra were recorded on a Shimadzu UV-3101PC UV-VIS-NIR Spectrophotometer. Fourier-transform infrared (ATR FT-IR) spectra were obtained via a FT-IR (FT/IR-6000, JASCO). The AFM-IR imaging and spectra were measured using a NanoIR2 system (Bruker Anasys Instruments) in contact mode, with a gold coated PR-EX-TNIR-A tip, spring constant of 0.07-0.4 N/m and resonant frequency of 9-17 kHz. IR spectra were collected from 900-2000cm⁻¹ at an interval of 4cm⁻¹ and co-averaging of 128 scans. 5x5um AFM-IR images were scanned at 1700cm⁻¹ with 150x150pixels and co-averaging of 16 scans. The molecular packing of was studied by grazing incidence wide angle X-ray diffraction (GIWAXS; Nanoinxider Xenocs).

Preparation of PBBTL:BBL blend films:

Cleaned 1” by 1” microscopic glass was immersed in 30-33 % NH₃ in water for 2 hrs. The glass substrates were immersed in DI water (30 mins) followed by IPA (30 mins). The glass substrates were blow-dried using a N₂ gun and UV/O₃ treated at 100 °C for 10 mins. PBBTL and BBL were separately dissolved in methanesulfonic acid (MSA) at a concentration of 10 mg/mL at 80 °C. The two solutions were mixed at the desired ratio and stirred at 80 °C. The blend solution was spincoated on the glass
substrate at 1000 rpm for 30 s and the wet films were immersed in IPA for about 10 mins before annealing in open-air at 100 °C. The dried films were moved into the glovebox (O₂ and H₂O < 0.1 ppm) and annealed at 200 °C for 1 hr. The thickness of the films obtained this way is in the range of 100-120 nm.

Thermoelectric Device Fabrication:

On the blend films, 100 nm of gold parallel electrodes were thermally evaporated using a shadow mask. The length and width of the electrodes were 2 cm by 0.25 cm, and the channel length between the electrodes was 0.25cm. Electrical conductivity was calculated using the formula \(\sigma = \frac{L}{R \times W \times t} \), where \(R \) is the resistance measured using a Keithley 2400 SourceMeter between two electrodes, \(L \) is the channel length between the electrodes, \(t \) is the thickness of the film and \(W \) is the channel width (length of the electrodes). P- and n-doping of the films were performed by immersing the device into 5 mM FeCl₃ or 5 mM BV** solution in anhydrous acetonitrile, respectively, for various duration, followed by thermal annealing at 80 °C for 10 mins.

Thermovoltage Measurements

The Seebeck coefficient was measured by using a custom-made setup with a Peltier heater (298 K + \(\Delta T \)) and a Peltier cooler (298 K) which are used to vary the temperature gradient (= 1.5 K) across the two ends of the thin film and induce a thermal voltage. Two thermistor temperature sensors, connected to Thermocouple Data Logger GL840 from Graphtec, were placed on the coated thin film alongside two electrical probes which were connected to a Keithley 4200 SCS Semiconductor Characterization System.

Figure S1. SEM images of the PBBTL:BBL blend films.
Figure S2. Schematic of the Seebeck coefficient measurement set-up. Dimensions are all in millimeters. TC denotes thermocouple. Electrical resistance of the doped films were measured using the same device setup at room temperature.

Figure S3. P-doping of PBBTL:BBL 1:2 blend films.
Figure S4. N-doping of PBBTL:BBL 1:2 blend films.

Figure S5. P-doping of PBBTL:BBL 1:1 blend films.
Figure S6. N-doping of PBBTL:BBL 1:1 blend films.

Figure S7. P-doping of PBBTL:BBL 2:1 blend films.
Figure S8. N-doping of PBBTL:BBL 2:1 blend films.

Figure S9. Schematic of the I-V curve measurement set-up for the full device. Dimensions are all in millimeters. TC denotes thermocouple.
References
