Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Se-doped Li₆PS₅Cl and Li_{5.5}PS_{4.5}Cl_{1.5} with improved ionic conductivity and interfacial compatibility: a high-throughput DFT study

Ming Jiang¹, Zhi-Wen Chen², Adwitiya Rao², Li-Xin Chen², Xiao-Tao Zu^{3, *}, Chandra Veer Singh^{2,4, *}

¹Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

²Department of Materials Science and Engineering, University of Toronto, Ontario M5S 3E4, Canada

³Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

⁴Department of Mechanical and Industrial Engineering, University of Toronto, Ontario M5S 3G8, Canada

Atom	Wyckoff Position	Occupancy (Li ₆ PS ₅ Cl)	Occupancy (Li _{5.5} PS _{4.5} Cl _{1.5})
Li ₁	48h	0.456	0.440
\mathbf{P}_1	4b	1.000	1.000
Cl_1	<i>4a</i>	0.615	0.370
\mathbf{S}_1	<i>4a</i>	0.385	0.630
Cl_2	4d	0.834	0.630
S_2	4d	0.166	0.370
S_3	16e	0.618	1.000

Table S1. Atomic occupancy in Li_6PS_5Cl and $Li_{5.5}PS_{4.5}Cl_{1.5}$.

Stray atoms ID	Total an energy (aV)	Lattice constant (Å)			Degree (°)		
Structure ID.	Total energy (ev)	а	b	c	α	β	γ
1	-215.62	9.91	10.08	10.02	89.92	88.12	89.82
2	-216.05	10.03	9.91	9.89	90.19	89.78	90.45
3	-216.27	9.88	9.95	9.98	89.97	91.54	90.63
4	-216.42	9.97	9.92	9.98	89.89	89.18	90.48
5	-216.25	10.06	9.89	9.99	89.04	89.58	90.36
6	-216.18	10.04	9.97	9.94	89.25	88.69	87.14
7	-216.87	9.98	9.96	9.92	90. 77	89.53	90.68
8	-216.41	9.92	9.89	9.91	88.94	88.74	89.30
9	-216.03	9.93	9.94	10.09	89.05	88.64	88.02
10	-216.21	9.97	10.05	9.85	89.22	88.99	89.37

Table S2. Total energy and lattice parameter of Li_6PS_5Cl obtained from DFT calculations. The most stable structure is indicated in bold.

Structure ID	Total energy (eV)	Lattice constant (Å)			Degree (°)		
Structure ID.	Total energy (ev)	a	b	с	α	β	γ
1	-203.63	10.18	9.92	9.86	89.46	92.02	89.32
2	-203.45	9.87	10.08	10.21	91.53	89.82	90.64
3	-203.72	9.82	10.03	10.03	90.24	88.88	89.74
4	-203.71	10.17	9.79	9.88	89.52	91.99	88.35
5	-203.39	9.99	9.74	10.08	87.64	90.86	90.07
6	-203.34	9.79	10.06	9.88	89.26	89.14	88.83
7	-203.49	9.85	10.02	9.99	89.04	90.19	89.50
8	-202.17	9.88	9.91	9.93	89.55	91.92	91.97
9	-203.15	10.17	9.81	9.86	89.15	90.05	89.07
10	-202.34	9.91	9.92	9.86	90.04	89.20	88.89

Table S3. Total energy and lattice parameter of $Li_{5.5}PS_{4.5}Cl_{1.5}$ obtained from DFT calculations. The most stable structure is indicated in bold.

Strature ID		Total end	ergy (eV)	
Structure ID.	Li ₆ PS ₄ SeCl	Li ₆ PS ₃ Se ₂ Cl	Li ₆ PS ₂ Se ₃ Cl	Li ₆ PS ₄ SeCl
1	-212.56	-208.15	-204.96	-201.27
2	-212.94	-208.99	-204.98	-201.15
3	-212.73	-208.66	-204.91	-201.09
4	212.76	-208.53	-204.95	-200.89
5	-212.83	-208.96	-205.05	-201.09
6	-212.28	-208.59	-204.82	-201.29
7	-212.87	-208.90	-204.88	-201.08
8	-212.82	-208.84	-204.91	-201.12
9	-213.09	-209.05	-205.27	-201.09
10	-212.80	-208.88	-204.92	-201.22

Table S4. Total energy of $Li_6PS_{5-x}Se_xCl$ ($x = 1 \sim 4$) obtained from DFT calculations. The most stable structure for each Se-doped Li_6PS_5Cl is indicated in bold.

Stanotina ID		Total energy (eV)	
Structure ID.	Li ₆ PS _{3.5} SeCl	Li ₆ PS _{2.5} Se ₂ Cl	Li ₆ PS _{1.5} Se ₃ Cl
1	-199.77	-195.97	-192.61
2	-200.18	-196.63	-192.61
3	-200.26	-196.33	-192.55
4	-200.01	-196.28	-192.36
5	-199.92	-196.12	-192.11
6	-200.02	-196.42	-192.51
7	-199.75	-196.33	-192.17
8	-199.74	-196.12	-192.36
9	-199.76	-196.22	-192.66
10	-199.73	-195.81	-191.88

Table S5. Total energy of $L_{15.5}PS_{4.5-x}Se_xCl_{1.5}$ ($x=1 \sim 3$) obtained from DFT calculations. The most stable structure for each Se-doped $L_{15.5}PS_{4.5}Cl_{1.5}$ is indicated in bold.

14010 5011	factore purchase			i) stractares:
	Li ₆ PS ₄ SeCl	Li ₆ PS ₃ Se ₂ Cl	Li ₆ PS ₂ Se ₃ Cl	Li ₆ PSSe ₄ Cl
a (Å)	10.20	10.32	10.67	10.68
b (Å)	10.22	10.66	10.05	10.25
c (Å)	10.27	10.11	10.70	10.92
α (°)	90.14	90.21	92.13	90.30
β (°)	88.18	86.90	90.00	90.30
γ (°)	92.09	90.57	90.00	92.64
V (Å ³)	1069.09	1110.71	1146.05	1193.13

Table S6. Lattice parameter of the most stable $Li_6PS_{5-x}Se_xCl$ ($x = 1 \sim 4$) structures.

	Li _{5.5} PS _{3.5} SeCl _{1.5}	$Li_{5.5}PS_{2.5}Se_2Cl_{1.5}$	$Li_{5.5}PS_{1.5}Se_{3}Cl_{1.5}$
a (Å)	9.90	9.97	10.11
b (Å)	10.14	10.27	10.34
c (Å)	10.08	10.22	10.39
x (°)	89.95	90.01	89.79
3 (°)	89.66	89.62	89.67
γ (°)	90.22	90.24	89.41
(Å ³)	1012.06	1045.94	1085.29

Table S7. The lattice parameter of the most stable $Li_{5.5}PS_{4.5-x}Se_xCl_{1.5}$ ($x = 1 \sim 3$) structure.

C _{SSE}	Celectrode	<i>x</i> _m	Phase equilibria at x_m	ΔE_D (meV/atom)
	LiCoO ₂	0.53	LiCl, Li ₃ PO ₄ , Co ₉ S ₈ , Li ₂ SO ₄ , Li ₂ S	-302.12
L16PS5C1	Li _{0.5} CoO ₂	0.51	Li ₂ SO ₄ , Co ₉ S ₈ , Li ₃ PO ₄ , LiCl, Li ₂ S	-434.98
	LiCoO ₂	0.57	Li ₂ S, Co ₉ S ₈ , LiCl, Li ₂ SO ₄ , CoSe ₂ , Li ₃ PO ₄	-302.24
L16PS4SeCI	Li _{0.5} CoO ₂	0.51	C09S ₈ , Li ₃ PO ₄ , LiCl, Li ₂ SO ₄ , Li ₂ S, Li ₂ Se	-434.98
	LiCoO ₂	0.61	Co ₉ S ₈ , Li ₂ S, Li ₃ PO4, CoSe ₂ , LiCl, Li ₂ SO ₄	-310.77
Li ₆ PS ₃ Se ₂ Cl	Li _{0.5} CoO ₂	0.53	Li ₂ SO ₄ , Li ₃ PO ₄ , Co ₉ S ₈ , LiCl, Co ₃ Se ₄ , Li ₂ Se	-434.87
	LiCoO ₂	0.62	Li ₂ S, Co ₉ S ₈ , Li ₂ Se, Li ₃ PO ₄ , CoSe ₂ , LiCl	-319.45
$L_{16}PS_2Se_3CI$	Li _{0.5} CoO ₂	0.55	LiCl, Co ₉ S ₈ , Co ₃ Se ₄ , Li ₂ Se, Li ₂ SO ₄ , Li ₃ PO ₄	-433.68
	LiCoO ₂	0.62	CoSe ₂ , Li ₂ S, LiCl, Li ₂ Se, Co ₉ S ₈ , Li ₃ PO ₄	-328.28
L16P5504U1	Li _{0.5} CoO ₂	0.51	Li ₂ SO ₄ , Li ₃ PO ₄ , Co ₉ S ₈ , Co ₉ Se ₈ , LiCl, Li ₂ Se	-432.70

Table S8. Phase equilibria and reaction energy (ΔE_D) of Li₆PS_{5-x}Se_xCl ($x = 0 \sim 4$) at the interface with LiCoO₂ and Li_{0.5}CoO₂.

C _{SSE}	Celectrode	<i>x</i> _m	Phase equilibria at $x_{\rm m}$	ΔE_D (meV/atom)
	LiCoO ₂	0.52	LiCl, Li ₂ S, Li ₂ SO ₄ , Co ₉ S ₈ , Li ₃ PO ₄	-308.41
L15.5P 54.5C11.5	Li _{0.5} CoO ₂	0.50	Li_3PO_4 , Co_9S_8 , Li_2S , $LiCl$, Li_2SO_4	-443.75
Li _{5.5} PS _{3.5} SeCl _{1.5}	LiCoO ₂	0.56	CoSe ₂ , Co ₉ S ₈ , Li ₂ SO ₄ , Li ₂ S, LiCl, Li ₃ PO ₄	-312.97
	Li _{0.5} CoO ₂	0.52	CoSe ₂ , Li ₃ PO ₄ , Li ₂ Se, Li ₂ SO ₄ , Co ₉ S ₈ , LiCl	-444.35
Li _{5.5} PS _{2.5} Se ₂ Cl _{1.5}	LiCoO ₂	0.60	CoSe ₂ , LiCl, Li ₂ SO ₄ , Co ₉ S ₈ , Li ₂ S, Li ₃ PO ₄	-322.69
	Li _{0.5} CoO ₂	0.55	LiCl, Li ₃ PO ₄ , CoSe ₂ , Li ₂ SO ₄ , Li ₂ Se, Co ₉ S ₈	-443.70
	LiCoO ₂	0.61	CoSe ₂ , Li ₃ PO ₄ , Li ₂ Se, Li ₂ S, LiCl, Co ₉ S ₈	-332.08
$L1_{5.5}PS_{1.5}Se_{3}CI_{1.5}$	Li _{0.5} CoO ₂	0.59	Co ₉ S ₈ , LiCl, CoSe ₂ , Li ₂ SO ₄ , Li ₂ Se	-443.10

Table S9. Phase equilibria and reaction energy (ΔE_D) of Li_{5.5}PS_{4.5-x}Se_xCl_{1.5} ($x = 0 \sim 3$) at the interface with LiCoO₂ and Li_{0.5}CoO₂.

	•		•	
C _{SSE}	C _{electrode}	<i>x</i> _m	Phase equilibria at $x_{\rm m}$	$\Delta E_{\rm D}$ (meV/atom)
Li ₆ PS ₅ Cl	LiFePO ₄	0.39	Li ₃ PO ₄ , FePS, Li ₄ P ₂ O ₇ , LiCl, FeS ₂	-99.75
	FePO ₄	0.45	LiCl, FeS ₂ , Li ₄ P ₂ O ₇ , FePS, LiPO ₃	-196.86
Li ₆ PS ₄ SeCl	LiFePO ₄	0.43	FePS, Se, FeSe ₂ , Li ₃ PO ₄ , FeS ₂ , LiCl	-101.73
	FePO ₄	0.45	FeSe ₂ , LiCl, LiPO ₃ , FeS ₂ , FePS, Li ₄ P ₂ O ₇	-196.53
	LiFePO ₄	0.43	FeS ₂ , FePS, FeSe ₂ , LiCl, Li ₃ PO ₄ , Se	-107.28
$L_{16}PS_3Se_2CI$	FePO ₄	0.45	FeS ₂ , FeSe ₂ , Li ₄ P ₂ O ₇ , FePS, LiCl, LiPO ₃	-202.34
	LiFePO ₄	0.43	LiCl, FeS ₂ , FePS, FeSe ₂ , Se, Li ₃ PO ₄	-112.83
Li ₆ PS ₂ Se ₃ Cl	FePO ₄	0.50	FeS ₂ , Se, FeSe ₂ , LiCl, Li ₄ P ₂ O ₇ , FePS	-208.47
	LiFePO ₄	0.43	FeSe ₂ , Li ₃ PO ₄ , Se, LiCl, FePS	-118.59
L1 ₆ PSSe ₄ CI	FePO ₄	0.50	FePS, FeS ₂ , LiCl, FeSe ₂ , Li ₄ P ₂ O ₇ , Se	-215.19

Table S10. Phase equilibria and reaction energy (ΔE_D) of Li₆PS_{5-x}Se_xCl ($x = 0 \sim 4$) at the interface with LiFePO₄ and FePO₄.

,		•	•	
C _{SSE}	C _{electrode}	<i>x</i> _m	Phase equilibria at x_m	ΔE_D (meV/atom)
Li _{5.5} PS _{4.5} Cl _{1.5}	LiFePO ₄	0.40	Li ₄ P ₂ O ₇ , Li ₃ PO ₄ , FeS ₂ , LiCl, FePS	-87.52
	FePO ₄	0.46	LiPO ₃ , LiCl, FePS, FeS ₂ , Li ₄ P ₂ O ₇	-177.68
Li _{5.5} PS _{3.5} SeCl _{1.5}	LiFePO ₄	0.45	Se, FePS, LiCl, Li ₄ P ₂ O ₇ , FeS ₂ , Li ₃ PO ₄	-91.61
	FePO ₄	0.46	FeSe ₂ , FeS ₂ , LiPO ₃ , Li ₄ P ₂ O ₇ , FePS, LiCl	-180.63
Li _{5.5} PS _{2.5} Se ₂ Cl _{1.5}	LiFePO ₄	0.47	FeS ₂ , LiCl, FePS, FeSe ₂ , Se, Li ₃ PO ₄	-98.99
	FePO ₄	0.46	FePS, Li ₄ P ₂ O ₇ , LiCl, LiPO ₃ , FeSe ₂ , FeS ₂	-187.01
$Li_{5.5}PS_{1.5}Se_{3}Cl_{1.5}$	LiFePO ₄	0.47	Li ₃ PO ₄ , FePS, FeSe ₂ , Se, LiCl, FeS ₂	-105.62
	FePO ₄	0.46	FeS ₂ , FeSe ₂ , FePS, Li ₄ P ₂ O ₇ , LiPO ₃ , LiCl	-193.51

Table S11. Phase equilibria and reaction energy (ΔE_D) of $Li_{5.5}PS_{4.5-x}Se_xCl_{1.5}$ ($x = 0 \sim$ 3) at the interface with LiFePO₄ and FePO₄.

Figure S1. Crystal structure of (a) - (d) $\text{Li}_6\text{PS}_{5-x}\text{Se}_x\text{Cl}(x = 1 \sim 4)$ and (e) - (g) $\text{Li}_{5.5}\text{PS}_{4.5-x}\text{Se}_x\text{Cl}_{1.5}(x = 1 \sim 3)$. The blue, yellow, orange, watchet and purple spheres represent the Li, S, Cl, P and Se atoms, respectively.

Figure S2. The mean square displacement (MSD) of Li⁺ ions in (a) Li₆PS₅Cl, (b) Li₆PS₄SeCl, (c) Li₆PS₃Se₂Cl, (d) Li₆PS₂Se₃Cl and (e) Li₆PSSe₄Cl during 120 ps simulation time. (f) Diffusivity and activation energy of Li₆PS_{5-x}Se_xCl ($x = 0 \sim 4$) deduced from AIMD simulations at elevated temperatures ranging from 500 to 1000 K.

Figure S3. The mean square displacement (MSD) of Li⁺ ions in (a) Li_{5.5}PS_{4.5}Cl_{1.5}, (b) Li_{5.5}PS_{3.5}SeCl_{1.5}, (c) Li_{5.5}PS_{2.5}Se₂Cl_{1.5} and (d) Li_{5.5}PS_{1.5}Se₃Cl_{1.5} during 120 ps simulation time. (e) Diffusivity and activation energy of Li_{5.5}PS_{4.5-x}Se_xCl_{1.5} ($x = 0 \sim 3$) deduced from AIMD simulations at elevated temperatures ranging from 500 to 1000 K.

Figure S4. The Li⁺ migration pathway of (a) Li_6PS_5Cl and (b) $Li_{5.5}PS_{4.5}Cl_{1.5}$ at 500 K. The blue, green, yellow and red spheres represent the Li, P, S and Cl atoms, respectively. The blue line represents the Li⁺ migration pathway during 120 ps simulation time.

