Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Figure S1. XRD patterns of Zn_{1-2x}Li_xGa_{2+x}O₄:Cr³⁺ solid solutions (x= 0.4, 0.425, 0.45, 0.475, 0.5).

Figure S2. Zoom-in area of XRD patterns of $Zn_{1-2x}Li_xGa_{2+x}O_4$:Cr³⁺ solid solutions (x= 0.4, 0.425, 0.45, 0.475, 0.5) in the range from 24 ° to 27 °.

Figure S3. EDS analysis and the selected elemental distribution mappings of solid solution (x = 0.25)

Figure S4 X-ray photoelectron spectroscopy survey of $Zn_{1-2x}Li_xGa_{2+x}O_4$: Cr³⁺ (x = 0.25) phosphor.

Figure S5. X-ray photoelectron spectroscopy analysis of the surface elemental contents. The corresponding fitting curves of each element were given.

Figure S6. A comparison of photoluminescence (PL) spectra of Zn_{1-2x}Li_xGa_{2+x}O₄:Cr³⁺ solid solutions

Figure S7. A comparison of photoluminescence excitation (PLE) spectra of $Zn_{1-2x}Li_xGa_{2+x}O_4$:Cr³⁺ solid solutions

Figure S8. Photoluminescence excitation (PLE) spectrum and photoluminescence (PL) spectra of $Zn_{1-2x}Li_xGa_{2+x}O_4$:Cr³⁺ (x = 0). PLE spectrum was monitored at 709 nm. PL spectra were monitored at 302, 409 and 558 nm, respectively.

Figure S9. Tanabe–Sugano diagram of d³ ions.

Figure S10. Diffuse reflection spectra of $Zn_{1-2x}Li_xGa_{2+x}O_4$:Cr³⁺ solid solutions (x = 0, 0.1, 0.2, 0.25,

Figure S11. Charging-wavelength dependent persistent luminescence decay with x = 0

Figure S12. Charging-wavelength dependent persistent luminescence decay with x = 0.1

Figure S13. Charging-wavelength dependent persistent luminescence decay with x = 0.3

Figure S14. Charging-wavelength dependent persistent luminescence decay with x = 0.5

Figure S15. Temperature dependent PL spectra of $Zn_{1-2x}Li_xGa_{2+x}O_4$: Cr³⁺ (x = 0.25).

Figure S16. Comparison of PL spectra (a), normalized PL spectra (b) of $Zn_{1-2x}Li_xGa_{2+x}O_4$:Cr³⁺ (x = 0.25) at 20 °C, 100 °C, 180 °C, and 260 °C, respectively.

		•	•				
	0	0.1	0.2	0.25	0.3	0.4	0.5
4T1 (nm)	412	412	414	418	416	417	414
⁴ T ₂ (nm)	556	558	568	580	587	603	606
<i>Dq</i> (cm⁻¹)	1799	1792	1761	1724	1704	1658	1650
x	3.4943	3.5439	3.7189	3.8760	4.1096	4.4614	4.6381
Dq/B	2.97	2.92	2.75	2.61	2.41	2.15	2.03

Table S1. The calculated crystal field parameters of each composition