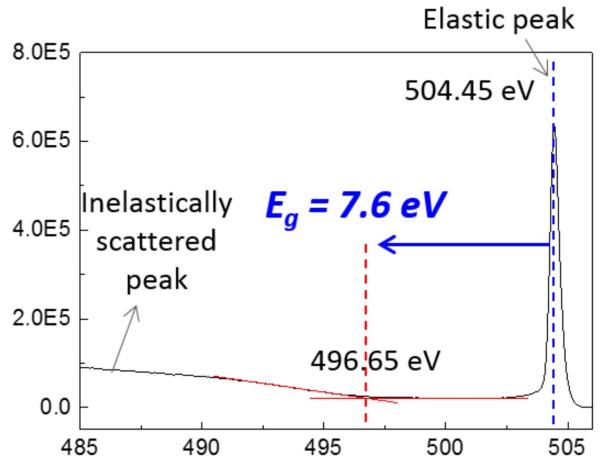
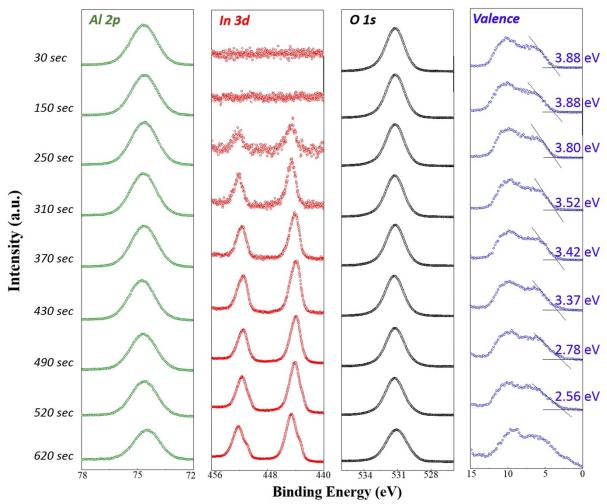
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

High performance oxide thin-film diode and its conduction mechanism based on ALD-assisted interface engineering


Hye-In Yeom,^a Jingyu Kim,^a Guk-Jin Jeon,^a Jeongwoo Park,^b Dong Uk Han,^a Joohyeong Kim,^a Kyung Min Kim,^a Bonggeun Shong^b and Sang-Hee Ko Park^a,*

^aDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea


^bDepartment of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea

Conduction mechanism	Equation
Thermionic emission	$J = A * T^2 exp(\frac{q\Phi_B - \Delta E}{k_B T})$
Fowler-Nordheim tunneling	$J_{FN} = \frac{\alpha(\beta V)^2 A}{\Phi_B d^2} exp^{\text{red}} (-\frac{bd\Phi_B^{3/2}}{\beta V})$ $ln^{\text{red}} (J/V^2) \propto K_1 1/V$
Ohmic conduction	$J = q\mu n_0 V$ $J \propto V$
Poole-Frenkel emission	$J = q\mu N_C E \left[\frac{-q(\Phi T - \sqrt{qE/\pi\varepsilon_i\varepsilon_0})}{kT} \right]$ $\ln(J/V) = \sqrt{V}$
Trap-free-SCLC	$J = \frac{9}{8}\mu_e \varepsilon_0 \varepsilon_s \frac{V^2}{d^3}$ $J \propto V^2$
Trap-limited SCLC	$J_{SCLC} = \sigma_0$ $\left\{ \frac{\varepsilon_0 \varepsilon_i l sin\left(\frac{\pi}{l}\right) l^4}{q(l+1)B_c(2\alpha)^3} \right\} l \left(\frac{2l+1}{l+1}\right)^{l+1} \left(\frac{1}{d}\right)^{2l+1} V^{l+1}$ $log \square (J) \propto K_2 log \square (V)$

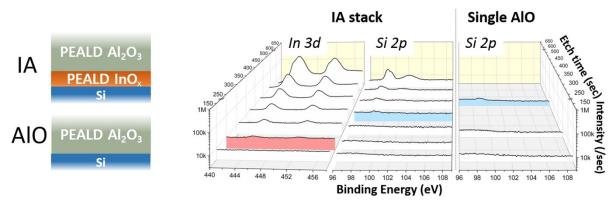

Table S1. Equations for electronic conduction mechanisms in dielectric film.

Figure. S1. Reflection electron energy loss spectroscopy (REELS) analysis of Al₂O₃. The calculated energy band gap is 7.6 eV.

Figure. S2. Al 2p, In 3d, O 1s, and valence spectra for the IA (3nm-InO_x/20nm-Al₂O₃) stack as a function of sputter time for depth profile in X-ray photoelectron spectroscopy (XPS) analysis.

Figure. S3. X-ray photoelectron spectroscopy (XPS) depth profile of In 3d and Si 2p in IA (3nm-InO_x/20nm-Al₂O₃) stack, and Si 2p in 20nm-Al₂O₃ film on Si wafer.

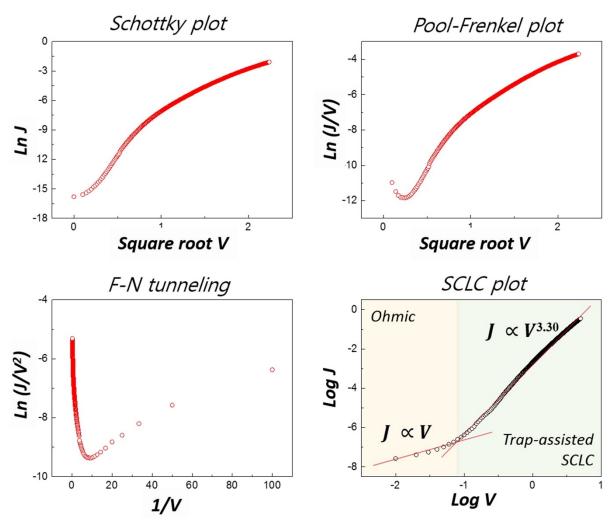


Figure S4. Fitting with various conduction models of the MSIM diode.

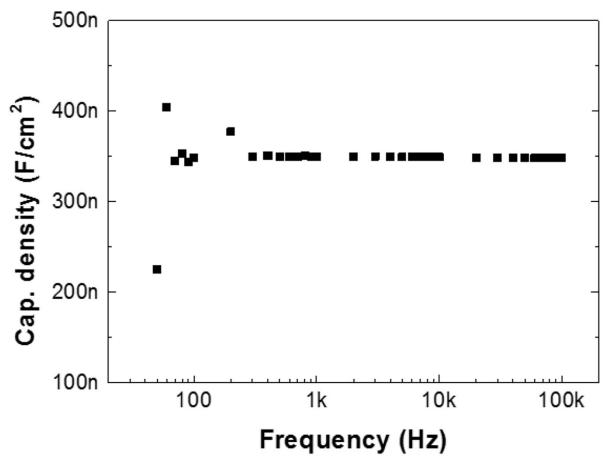
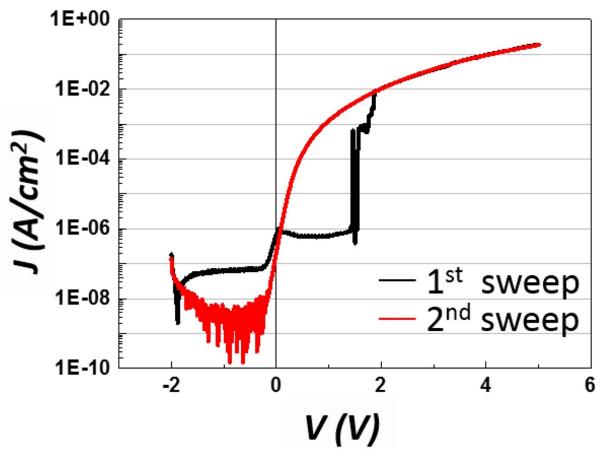
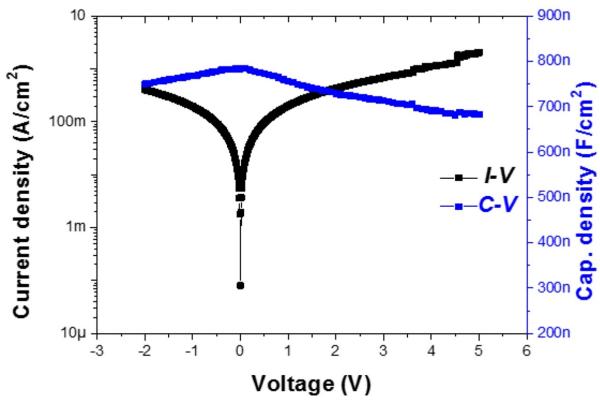




Figure S5. Capacitance–frequency curve of Al₂O₃ at applied DC voltage of -1V.

Figure S6. Wake-up effect of the MSIM diode. After the first sweep, the diode exhibited good rectifying characteristics.

Figure S7. *J-V* characteristics of the MSIM diode using Al₂O₃ by thermal-atomic layer deposition (ALD).