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Experimental section

Materials:

The etched PEN/ITO substrates for flexible photodetector were purchased from
Advanced Election Technology CO., Ltd. Hole transport material-PEDOT:PSS
(Clevios 4083) , electron transport material-PC4s;BM, CH3NH;3Pbl;(Cl, precursors—
methylammonium iodide (MAI), lead iodide (Pbl,) and lead chloride (PbCl,) were
purchased from Xi'an Polymer Light Technology Corp. All the organic solvents include
y-butyrolactone (GBL), Dimethyl sulfoxide (DMSO, 99.9%), 1,2-dichlorobenzene
(ODCB, 99.9%), chlorobenzene (CB, 99.9%) were purchased from Sigma Aldrich.
Hole transport material-PDCBT was purchased from 1-Material. All reagents and
chemicals were used as received without further purification.

Perovskite precursor solutions:

CH;3NH;PbI; (Cl, perovskite precursor solutions were prepared by mixing MAI,
Pbl, and PbCl, with a molar ratio of 1.4:1.25:0.15 in a mixed solvent of GBL: DMSO
=7:3 (v:v) with a slight amount of excessive Pbl, and stirred at 55 °C for 12 hours in a
N,-filled glove box.

Sample preparation and device fabrication:

PEN/ITO substrates were sequentially cleaned by sonication with distilled water,
isopropanol, ethanol and then treated with ultraviolet-ozone plasma before spin-coating
of the PEDOT:PSS (Clevios 4083). The PEDOT:PSS (Clevios 4083) solution were
spin-coated on the PEN/ITO substrates at 4000 rpm for 60 s, and then annealed on a
hotplate at 120°C for 15 min. After depositing the PEDOT:PSS layer, an additional
hole transport layer PDCBT was spin-coated at 5000 rpm for 50 s. In order to improve
the wettability of the perovskite solution on the PDCBT layer, a modified layer was

spin coated by a continuous two-step spin-coating method process at 4000 rpm for 20



and 10 s. During the first spin-coating step, 150 L. GBL was dripped on top of the
PDCBT layer, and during the second spin-coating step, 50 uL. CB was spin-coated. The
perovskite layer was deposited by a continuous two-step spin-coating method process
at 1000 rpm and 4000 rpm for 10 and 31 s, respectively. During the second spin-coating
step, 400 uL CB was dripped on top of the perovskite film. Then, the flexible samples
were annealed at 100°C for 10 min and cooled down to room temperature on a glass
Petri dish. For the device fabrication, 60 pL PC¢BM solution was deposited at 3000
rpm for 60 s on top of the perovskite film. Finally, it was sequentially deposited PEI
(0.05 wt. % in isopropanol) layer at 5000 rpm for 30 s and 70 nm silver electrodes by
vacuum thermal evaporation under a vacuum of 5x1075 Pa. The working area of the
device is 0.038 cm?.

Device characterization:

Self-built quantum efficiency test system was used to test the responsivity and
detectivity. The response speed was studied by an oscilloscope (MSOS58, Tektronix)
cooperated with a chopper. Surface morphologies of perovskite films were performed
using SEM (JSM-6700F, JEOL). UV-vis spectra were conducted by a UV-—vis
spectrometer (UV-2600, Shimadzu). XRD measurements were obtained using an X-ray
diffractometer (Empyrean, PANalytical). Self-built optical path for the
linearly/circularly polarized photoexcitation-modulated photocurrent experiments is
schematically shown in Figure S3. The excitation light source is 635 nm continuous-
wave (CW) laser. The angle of quarter wave plate is adjusted to convert linearly
polarized light and circularly polarized light, and the photocurrent are monitored by the
source meter. Magneto-photocurrent measurements (Electrical transport measurement
system, Model EM7, East Changing Technologies) were performed by recording

photocurrent as a function of magnetic field. Steady and transient fluorescence



spectroscopic measurements were performed using a fluorescence spectrophotometer

(Fluorolog-3, Horiba Scientific). Measurement of impedance spectrum was performed

using impedance analyzer (E4990A, Keysight). The film thickness was measured by an

ellipsometer (RC2-X, J.A. Woollam Co.).
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Figure S1. The thicknesses of PDCBT layer, which was measured by an ellipsometer.
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Figure S2. Dark

current density under zero bias of MAPbI;Cl,-based FSPPD
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with/without PDCBT layer.
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Figure S3. The rise time/decay time for FSPPD with/without PDCBT layer. The rise
time of FSPPD was calculated by the time interval for the photocurrent to reach 90%
of its highest value, while the decay time was calculated by the time interval for the

photocurrent to fall 10% of its highest value.
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Figure S4. Normalized responsivity of MAPbI; Cls-based FSPPD as a function of



bending cycles with bending radius of 5 mm.
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Figure S5. Grain size distribution histogram of MAPbI; (Cl, film prepared (a) without

PDCBT and (b) with PDCBT, obtained by the top view of SEM images.
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Figure S6. XRD patterns of MAPbI;Cly film prepared with/without PDCBT (a)

excluding and (b) including PEN peak.
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Figure S7. Experimental setup for the linear/circular photoexcitation-modulated

photocurrent measurements.
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Figure S8. PL spectra of MAPbI3—<Clx films prepared with/without PDCBT.



» w/o PDCBT
| « w/ PDCBT

55 160 165 170 175
hv (eV)

Figure S9. The band edges of MAPbI;Cl, film prepared with/without PDCBT

determined from Tauc plots.
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Figure S10. Energy level diagram of the FSPPD with PDCBT.



