Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

K₂S₄O₆: improving birefringence and nonlinear optical

property with [O₃S-S-SO₃]²⁻ group

Tingting Huang,
ª Yan Xiao, Jiashuo Gu,
ª Ying Wang, $^{\rm a}$ Kui Wu,
a and Bingbing Zhang*a

a. College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University,Baoding 071002, China

Corresponding Author E-mail: Prof. B. Zhang zhangbb@hbu.edu.cn

Figure S1. (a) The thermogravimetric (TG) and differential scanning calorimetry (DSC) curves of $K_2S_4O_6$ (b) The PXRD pattern of residual.

Figure S2. The calculated band structure structure of $K_2S_4O_6$.

Figure S3. The electron localization function (ELF) of $K_2S_4O_6$.

Compounds	nds SHG (×KDP) Birefringence		Eg	Eg(Calc.)	Ref.
LiNaSO4	1.09	N/A	3.5	N/A	1
LiKSO4	3	N/A	4.9	N/A	2
Li ₂ SO ₄ ·H ₂ O	<1	0.023	4.89	N/A	3
$Rb_2Mg_2(SO_4)_3$	0.3	N/A	>6.2	6.05	4
$Rb_2Ca_2(SO_4)_3$	0.3	N/A	<200	N/A	5
$Cs_2Ca_2(SO_4)_3$	0.6	N/A	6.2	5.95	6
$Cs_2Mg_3(SO_4)_4$	0.4	N/A	<200	N/A	7
Li ₈ NaRb ₃ (SO ₄) ₆ ·2H ₂ O	0.5	N/A	N/A	4.86	8
NH ₄ NaLi ₂ (SO ₄) ₂	1.1	N/A	<186nm	N/A	9
(NH ₄) ₂ Na ₃ Li ₉ (SO ₄) ₇	0.5	N/A	<190nm	N/A	9
Li ₉ Na ₃ Rb ₂ (SO ₄) ₇	1.3	N/A	6.70	N/A	10
$CsSbF_2SO_4$	3	0.112	4.76	4.33	11
RbSbCl ₂ SO ₄	2.7	N/A	N/A	3.48	12
$K_2Bi_2(SO_4)_2Cl_4$	5.5	0.056	4.46	3.91	13
$(NH_4)_2Bi_2(SO_4)_2Cl_4$	4.8	0.055	5.54	3.94	13
$Rb_2Bi_2(SO_4)_2Cl_4$	5.3	0.047	4.49	3.94	13
$Ce(SO_4)F_2$	8	0.361@546 nm	2.71	1.23	14
Te(CS(NH ₂) ₂) ₄ SO ₄ ·2H ₂ O	2.4	<u>0.21@546.1</u> nm	3	2.949	15
$Mg[CS(NH_2)_2]_3SO_4$	0.83	N/A	5.25	N/A	16
$Zn[CS(NH_2)_2]_3SO_4$	1.2	0.16@554 nm	4.96	N/A	17
(C ₆ H ₅ NH ₃)HSO ₄	0.4*Urea	N/A	4.9	N/A	18
$Cs_2Zn_2(SO_4)_3$	0.15	N/A	3.49	4.46	4
$RbSbF_2SO_4$	0.96	N/A	4.75	4.62	19
(NH ₄)SbCl ₂ SO ₄	1.7	N/A	4.54	4.12	20
$[Ag(NH_3)_2]_2SO_4$	1.4	0.102	4.42	2.93	21
KBiCl ₂ SO ₄	1.7	0.098	3.95	4.34	22
KTb(SO ₄) ₂	0.3	0.019	3.04	N/A	23
Sb ₄ O(SO ₄)(OH) ₂	1.2	0.147	3.46	4.41	24
$K_2Zn_3(SO_4)(HSO_4)_2F_4$	0.3	0.0126@546 nm	N/A	6.53	25
$Te_2O_3SO_4$	6	<u>0.043@546</u> .1 nm	4.24	1.954	26
Te(OH) ₃ (SO ₄)·H ₃ O	3	0.052@546.1 nm	4.72	4.538	26
K_2SO_4 ·SbF ₃	0.1	N/A	4.44	N/A	27
Rb_2SO_4 ·SbF ₃	0.3	N/A	4.15	4.16	27
$Y_2(Te_4O_{10})(SO_4)$	N/A	0.149@532 nm	4.1	3.66	28
Y ₃ (TeO ₃) ₂ (SO ₄) ₂ (OH)(H ₂ O)	N/A	0.092@532 nm	4.4	1.71	28

Table S1. The SHG response, birefringence, and band gap of sulfate NLO materials.

N/A = not reported or not available.

Bond	Population	Length(A)
S1-O1	0.55	1.47695
S1-O2	0.57	1.46362
S1-O3	0.56	1.47057
S1-S2	0.36	2.15969
S2-S3	0.39	2.01894
S3-S4	0.36	2.17330
S4-O4	0.56	1.46830
S4-O5	0.57	1.45955
S4-O6	0.57	1.46436

Table S2. The Mulliken population of bonds in $K_2S_4O_6$.

Table S3. The chemical formula, space group, band gap Eg-GGA and birefringence Δn at 1064 nm (without scissors correction), of different sulfates, thiosulfates and polythionates.

Crystals	Space group	Units	Band gap (eV)	Birefringence (@1064 nm)
LiNaSO ₄	P3c	SO_4	5.589	0.006
LiKSO ₄	P3c	SO_4	5.279	0.001
Li ₂ SO ₄ .H ₂ O	<i>P</i> 2 ₁	SO_4	4.89	0.023
$Na_2S_2O_3$	$P2_{1}/a$	S_2O_3	4.197	0.121
$Na_2S_2O_3$	$Pna2_1$	S_2O_3	4.088	0.027
$K_2(S_2O_3)$	$P2_{1}/c$	S_2O_3	3.639	0.091
$Cs_2(S_2O_3)$	$P2_{1}/c$	S_2O_3	3.881	0.109
$K_2(S_3O_6)$	Pnam	S_3O_6	3.562	0.146
$K_2(S_4O_6)$	Сс	S_4O_6	3.749	0.065
$Na_2(S_4O_6) \cdot 2H_2O$	<i>C</i> 2 ₁	S_4O_6	3.769	0.204
$K_2Ba(S_6O_6)_2$	P2/c	S_6O_6	2.743	0.206

Groups	Structures	α	diagonalized α	δ	β	Eg (eV)
SO4 ²⁻	•••	$a_{xx} = a_{yy} = a_{zz} = 32.$ 25	$a_{xx} = a_{yy} = a_{zz} =$ 32.25	0	$\beta_{xxx} = -3.16,$ $\beta_{xyy} = \beta_{xzz} = 1.58,$ $\beta_{yzz} = -\beta_{yyy} = 2.24$	7.40
$S_2O_3^{2-}$	•••	$a_{xx} = a_{yy} = 30.26$ $a_{zz} = 57.67$	$\alpha_{xx} = \alpha_{yy} = 30.$ 26 $\alpha_{zz} = 57.67$	27.41	$\beta_{xxy} = -\beta_{yyy} = 10.21,$ $\beta_{xxz} = \beta_{yyz} = 29.40,$ $\beta_{zzz} = 213.15$	6.21
S ₃ O ₆ ²⁻	•	a_{xx} =85.40, a_{xy} =-16.36, a_{yy} =80.34, a_{zz} =52.33	$a_{xx} = 52.33$ $a_{yy} = 66.32$ $a_{zz} = 99.43$	47.10	β_{xxx} =58.79, β_{xxy} =10.31, β_{xyy} =33.69, β_{yyy} =73.74, β_{xzz} =21.20, β_{yzz} =35.75	6.27
S4O6 ²⁻	•	$a_{xx} = 83.35,$ $a_{xy} = 13.22,$ $a_{yy} = 112.47,$ $a_{xz} = 5.38,$ $a_{yz} = 14.48,$ $a_{zz} = 73.07$	$a_{xx} = 68.23$ $a_{yy} = 78.24$ $a_{zz} = 122.41$	54.18	$\beta_{xxx} = 113.94, \\ \beta_{xxy} = -32.61, \\ \beta_{xyy} = 19.75, \\ \beta_{yyy} = 17.70, \\ \beta_{xxz} = -9.51, \\ \beta_{xyz} = -10.81, \\ \beta_{yyz} = 15.93, \\ \beta_{xzz} = 42.85, \\ \beta_{yzz} = -4.84, \\ \beta_{zzz} = 3.91$	5.54
S ₆ O ₆ ²⁻	***	$a_{xx} = 111.89,$ $a_{xy} = -14.24,$ $a_{yy} = 116.49,$ $a_{xz} = 8.62,$ $a_{yz} = 9.73,$ $a_{zz} = 155.70$	$a_{xx} = 96.94$ $a_{yy} = 128.52$ $a_{zz} = 158.63$	61.69	$\beta_{xxx} = 113.99,$ $\beta_{xxy} = -60.05,$ $\beta_{xyy} = 62.65,$ $\beta_{yyy} = -124.19,$ $\beta_{xxz} = -6.83,$ $\beta_{xyz} = 8.66,$ $\beta_{yyz} = 3.66,$ $\beta_{xzz} = 107.39,$ $\beta_{yzz} = -115.94,$ $\beta_{zzz} = 104.76$	4.59

Table S4. Structures, polarizability (α), polarizability anisotropy (δ), hyperpolarizability (β), and HOMO–LUMO gap (E_g) of (SO₄)^{2–}, (SO₃S)^{2–}, (S₃O₆)^{2–}, (S₄O₆)^{2–}, and (S₆O₆)^{2–}.

References

- 1. R. Punniyamoorthy, R. Manimekalai and G. Pasupathi, *Cryst. Res. Technol.*, 2018, **53**.
- 2. C. Amirthakumar, B. Valarmathi, P. Pandi and R. M. Kumar, *Chinese. J. Phys.*, 2020, **67**, 305-313.
- 3. P. Becker, S. Ahrweiler, P. Held, H. Schneeberger and L. Bohatý, *Cryst. Res. Technol.*, 2003, **38**, 881-889.
- 4. Y. C. Liu, Y. Q. Li, Y. Zhou, Q. R. Ding, Y. X. Chen, S. G. Zhao and J. H. Luo, *Inorg. Chem. Commun.*, 2021, **124**.
- 5. X. Z. W. E.-Q. S. Y. H. W. X. L. Y. Shen, *Chinese. J. Struc. Chem.*, 2021, **40**, 949-954.
- Y. Shen, X. Xue, W. Tu, Z. Liu, R. Yan, H. Zhang and J. Jia, *Eur. J. Inorg. Chem.*, 2020, 2020, 854-858.
- M. Wang, D. Wei, L. Liang, X. Yan and K. Lv, *Inorg. Chem. Commun.*, 2019, 107.
- Y. Li, S. Zhao, P. Shan, X. Li, Q. Ding, S. Liu, Z. Wu, S. Wang, L. Li and J. Luo, *J. Mater. Chem. C.*, 2018, 6, 12240-12244.
- Y. Q. Li, F. Liang, S. G. Zhao, L. Li, Z. Y. Wu, Q. R. Ding, S. Liu, Z. S. Lin, M. C. Hong and J. H. Luo, *J. Am. Chem. Soc.*, 2019, 141, 3833-3837.
- Y. Q. Li, C. L. Yin, X. Y. Yang, X. J. Kuang, J. Chen, L. H. He, Q. R. Ding, S. G. Zhao, M. C. Hong and J. H. Luo, *Chin. Chem. Soc.*, 2021, **3**, 2298-2306.
- 11. X. Dong, L. Huang, C. Hu, H. Zeng, Z. Lin, X. Wang, K. M. Ok and G. Zou, *Angew. Chem. Int. Ed.*, 2019, **58**, 6528-6534.
- 12. F. F. He, Y. L. Deng, X. Y. Zhao, L. Huang, D. J. Gao, J. Bi, X. Wang and G. H. Zou, *J. Mater. Chem. C.*, 2019, **7**, 5748-5754.
- 13. K. Chen, Y. Yang, G. Peng, S. Yang, T. Yan, H. Fan, Z. Lin and N. Ye, J. *Mater. Chem. C.*, 2019, **7**, 9900-9907.
- C. Wu, T. H. Wu, X. X. Jiang, Z. J. Wang, H. Y. Sha, L. Lin, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey and C. Zhang, *J. Am. Chem. Soc.*, 2021, 143, 4138-4142.
- X. Y. Weng, C. S. Lin, G. Peng, H. X. Fan, X. Zhao, K. C. Chen, M. Luo and N. Ye, *Cryst. Growth. Des.*, 2021, 21, 2596-2601.
- 16. G. P. P. Philominathan, *Mod. Phys. Lett. B.*, 2009, 23, 3035 3043.
- 17. J. Ramajothi, S. Dhanuskodi and K. Nagarajan, *Cryst. Res. Technol.*, 2004, **39**, 414-420.
- 18. N. Sudharsana, G. Subramanian, V. Krishnakumar and R. Nagalakshmi, *Spectrochim. Acta. A.*, 2012, **97**, 798-805.
- F. Yang, L. J. Huang, X. Y. Zhao, L. Huang, D. J. Gao, J. Bi, X. Wang and G. H. Zou, *J. Mater. Chem. C.*, 2019, 7, 8131-8138.
- 20. F. F. He, Q. Wang, C. F. Hu, W. He, X. Y. Luo, L. Huang, D. J. Gao, J. Bi, X. Wang and G. H. Zou, *Cryst. Growth. Des.*, 2018, **18**, 6239-6247.
- 21. Y. C. Yang, X. Liu, J. Lu, L. M. Wu and L. Chen, Angew. Chem. Int. Ed.,

2021, **2104**, 07920.

- 22. Z. H. Yue, Z. T. Lu, H. G. Xue and S. P. Guo, *Cryst. Growth. Des.*, 2019, **19**, 3843-3850.
- 23. Q. Wu, C. Yang, J. Ma, F. Liang, C. L. Teng and Y. S. Du, *Inorg. Chem.*, 2021, **60**, 15041-15047.
- Q. Wei, K. Wang, C. He, L. Wei, X. F. Li, S. Zhang, X. T. An, J. H. Li and G. M. Wang, *Inorg. Chem.*, 2021, 60, 11648-11654.
- Y. Zhou, X. Y. Zhang, Z. Y. Xiong, X. F. Long, Y. Q. Li, Y. X. Chen, X. Chen, S. G. Zhao, Z. S. Lin and J. H. Luo, *J. Phys. Chem. Lett.*, 2021, 12, 8280-8284.
- 26. Y. X. Song, X. Hao, C. S. Lin, D. H. Lin, M. Luo and N. Ye, *Inorg. Chem.*, 2021, **60**, 11412-11418.
- F. He, L. Wang, C. Hu, J. Zhou, Q. Li, L. Huang, D. Gao, J. Bi, X. Wang and G. Zou, *Dalton. Trans.*, 2018, 47, 17486-17492.
- 28. P. F. Li, C. L. Hu, F. Kong, S. M. Ying and J. G. Mao, *Inorg. Chem. Front.*, 2021, **8**, 164-172.