Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Figure S1. (a) Schematic representation of crystals growth process based on inversion temperature crystallization (ITC). (b) Powder X-ray diffraction of as-grown MAPbBr₃ crystals.

Figure S2. The photographs of (a) as-grown and (b) polished MAPbBr₃ crystals.

Figure S3. Optical micrographs of top and bottom surface of as-grown and polished

 MAPbBr_3 crystal. The scale bars represent 500 $\mu m.$

Figure S4. The photograph of the polished crystal. The edge of the inner seed crystal shows a black outline in the figure.

Figure S5. Atomic force microscopy (AFM) images of top and bottom surface of asgrown and polished MAPbBr₃ crystal. The scale bars represent and 1 μ m.

Figure S6. Current - voltage sweep curves of (a) three as-grown and (b) three polished

MAPbBr₃ crystals.

Figure S7. Current - voltage sweep curves of fresh and one-week storage planar device

based on as-grown MAPbBr₃ crystals.

Figure S8. Current - voltage sweep curves of fresh and one-week storage planar device

based on MAPbBr₃ crystal polished without passivant.

Figure S9. Current - voltage sweep curves of fresh and one-week storage planar device

based on MAPbBr₃ crystal polished with passivant.

Figure S10. Current - voltage sweep curves of planar device based on (a) as-grown and

(b) polished MAPbBr₃ crystals at different temperature.

Figure S11. The dark current of the sandwich devices based on the (a) as-grown and (b) polished crystals from 0 to 1400s.

Figure S12. IV sweep curves of three sandwich structure devices based on (a) as-grown

 MAPbBr_3 and (b) MAPbBr_3 polished by passivant.

Figure S13. X-ray responses at different dose rates of X-ray detector based on polished

MAPbBr₃ under 0.5V bias. The maximal dose rate used here is about 683.3 nGy s⁻¹.

Figure S14. Time dependent response of X-ray detector based on as-grown MAPbBr₃ crystal at 0.6833 μ Gy s⁻¹ dose rate under 0.2V. The dashed line pulse occurs after the solid line pulse train. The time corresponding to the dashed pulse in the figure has no practical significance. The figure relates to the figure 5 in the text.

Figure S15. The stability of the devices based on the (a) as-grown and (b) polished crystals under the same radiation response.

Figure S16. Output Spectrum with silver (Ag) target. This was measured using a 1 mm thick CdTe detector located 1 meter from the Mini-X with a 1 mm pinhole collimator in front of the detector. Reproduced with permission from https://www.amptek.com/products/mini-x2-x-ray-tube. Copyright 2019 AMPTEK, Inc.

Figure S17. The schematic diagram of the measurement process.

Figure S18. The relationship between dose rate and tube current.

device structure	sensitivity (μC Gy ⁻¹ cm ⁻²)	detection limit (nGy s ⁻¹)	X-ray (keV)	bias (V/mm)	ref
Au/MAPbBr ₃ /C ₆₀ /BCP/Au	80	500	50	/	1
Au/MAPbBr₃/Au	39.1	/	50	0.5	2
Al/MAPbBr₃/Au	359	/	50	14,300	3
ITO/PEDOT: PSS/MAPbBr ₃ /C ₆₀ /BCP/ Cu	632	/	50	~ 5	4
Au/poly-TPD/MAPbBr ₃ /C ₆₀ /PCBM/Ag	23,600	/	30	50	5
Au/BCP/C ₆₀ /MAPbBr ₃ /Si	21,000	36	8	~3.5	6
Cr/BCP/C ₆₀ /MAPbBr _{2.94} Cl _{0.06} /Cr	84,000	7.6	8	60	7
Au/MAPbBr _{2.5} Cl _{0.5} (<i>p-i-n</i>)/Au	36,000	16	40	50	8
FTO/CsPbBr ₃ /Au	55,684	215	30	5	9
Au/Cs2AgBiBr6 /Au	/	59.7	30	2.5	10
Au/(NH₄)₃Bi₂l∍/Ag	803	< 55	50	6.5	11
Cr/PEA ₂ PbBr ₄ /Au	806	42	150	500	12
Au/MAPbBr₃/Au	21,897.44	25	30	0.5	this work

Table 1. Summary of Performance for X-ray Detectors Based on Perovskite.

References

- 1. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao and J. Huang, *Nat. Photonics*, 2016, **10**, 333-339.
- 2. W. P. Haodi Wu, Nian Liu, Xinyuan Du, Guangda Niu, Jiang Tang, *IEEE Nucl. Sci. Sympos. Medi. Imag. Confer.*, 2019.
- 3. Q. Xu, W. Shao, Y. Li, X. Zhang, X. Ouyang, J. Liu, B. Liu, Z. Wu, X. Ouyang, X. Tang and W. Jia, ACS Appl. Mater. Interfaces, 2019, **11**, 9679-9684.
- 4. A. Feng, S. Xie, X. Fu, Z. Chen and W. Zhu, *Front. Chem.*, 2021, **9**, 823868.

- 5. X. Wang, D. Zhao, Y. Qiu, Y. Huang, Y. Wu, G. Li, Q. Huang, Q. Khan, A. Nathan, W. Lei and J. Chen, *Phys. Status Solidi R.*, 2018, **12**.
- W. Wei, Y. Zhang, Q. Xu, H. Wei, Y. Fang, Q. Wang, Y. Deng, T. Li, A. Gruverman,
 L. Cao and J. Huang, *Nat. Photonics*, 2017, **11**, 315-321.
- 7. H. Wei, D. DeSantis, W. Wei, Y. Deng, D. Guo, T. J. Savenije, L. Cao and J. Huang, *Nat. Mater.*, 2017, **16**, 826-833.
- 8. X. Wang, Y. Xu, Y. Pan, Y. Li, J. Xu, J. Chen, J. Wu, Q. Li, X. Zhang, Z. Zhao, C. Li, E. E. Elemike, D. C. Onwudiwe, J. Akram and W. Lei, *Nano Energy*, 2021, **89**.
- W. Pan, B. Yang, G. Niu, K. H. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. S. Miao and J. Tang, *Adv. Mater.*, 2019, **31**, e1904405.
- W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu,
 L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui and J. Tang, *Nat. Photonics*, 2017, **11**, 726-732.
- 11. R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen, L. Tang, H. Zhu, J. Liu, L. Wu, W. Zhou, X. Liu and Y. Yang, *Nat. Photonics*, 2019, **13**, 602-608.
- 12. F. Lédée, A. Ciavatti, M. Verdi, L. Basiricò and B. Fraboni, *Adv. Opt. Mater.*, 2021, **10**.