Supporting Information

Sensitization of Bismuth Tungstate with Magnesium Phthalocyanine

for Photoinduced Charge Redistribution and Electron Localization:

CO₂ photoreduction from Vis to NIR Region

Yee Wen Teh, ^[a] Wei Kean Chong, ^[a] Chen-Chen Er, ^[a] Xin Ying Kong, ^[b] Boon-Junn Ng, ^[a] Siek-Ting Yong, ^[a] Siang-Piao Chai *^[a]

^aMultidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School

of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500

Selangor, Malaysia.

^bSchool of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological

University, 21 Nanyang Link, 637371, Singapore.

Table S1.	. Comparison	studies	of photocatalytic	CH ₄	production	yield	of E	Bi ₂ WO ₆	catalysts	and
metal phtł	nalocyanine se	ensitized	photocatalysts.							

Photocatalysts	CH₄ yield (µmol/g∙h)	Light source	References	
Oxygen defect Bi ₂ WO ₆ nanoplatelets	0.54	500 W Xenon lamp, Vis ($\lambda > 400$ nm)	Chem. Commun., 2016, 52 , 14242.	
CQDs-Bi ₂ WO ₆	0.90	500 W Xenon lamp, Vis ($\lambda > 400$ nm)	Nano Res., 2017, 10 , 1720.	
Bi ₂ WO ₆ nanotubes	0.13	300 W Xenon lamp	RSC Adv., 2020, 10, 8821-8824	
Cl-modified Bi2WO6 nanosheets	1.65	300 W Xenon lamp	ACS Appl. Mater. Interfaces, 2020, 12 , 54507-54516.	
Z-scheme Bi ₂ WO ₆ /Au/CdS	~0.75	300 W Xenon lamp Vis ($\lambda > 400$ nm)	Nanotechnology, 2017, 28 , 274002	
Atomically thin Bi ₂ WO ₆ nanosheets	0.63	300 W Xenon lamp AM 1.5	Appl. Catal., 2021, 283 , 119630.	
Z-scheme Cs ₂ AgBiBr ₆ /Bi ₂ WO ₆	0.41	300 W Xenon lamp AM 1.5	J. Colloid Interface Sci., 2023, 629 , 233-242	
Z-scheme Bi ₂ WO ₆ /InVO ₄	1.13	300 W Xenon lamp, Vis ($\lambda > 420$ nm)	Chem. Eng. J., 2022, 446 , 137129	
FePc-WO ₃ nanocomposites	~1.50	300 W Xenon lamp	Appl. Catal. B, 2020, 270 , 11849	
CuPc/g-C ₃ N ₄ heterojunctions	~0.25	500 W Xenon lamp, Vis ($\lambda > 420$ nm)	Appl. Catal. B, 2020, 277 , 119199	
ZnPc/BiVO ₄ ultrathin nanocomposites	~0.60	500 W Xenon lamp, Vis ($\lambda > 420$ nm)	Angew. Chem. Int. Ed., 2019, 58 , 10873-10878	
MgPc/Bi ₂ WO ₆ nanosheets	0.96	500 W Xenon lamp, Vis (λ > 410 nm)	Current study	

Table S2. Summary of EIS fitted parameters on the circuit model.

Sample	$R_s(\Omega)$	$R_{CT}(k\Omega)$	CPE (µMho)	Goodness of fit
BWO	10.9	9.40	25.1	0.997
1.0% MgPc-BWO	25.5	7.63	51.1	0.994

Fig. S1 Illustration of the photocatalysis rig for the CO₂ photoreduction experiment.

Fig. S2 Total average yields of CH_4 produced from CO_2/H_2O flow over as-synthesized samples after 6 h of visible light irradiation. The control experiments were conducted in the conditions of: (1) in the dark, (2) under N_2/H_2O flow, and (3) under dry CO_2 flow.

Fig. S3 XRD spectra of fresh and reacted 1.0% MgPc-BWO.

Fig. S4 EDX mapping of reacted 1.0% MgPc-BWO.

Fig. S5 Proposed EIS equivalent model circuit.