Supporting Information

Tunable luminescence thermal stability in YV_xAs_{1-x}O₄:Eu³⁺ through the

introduction of As⁵⁺ ions for remote temperature sensing applications

W. M. Piotrowski^{1†}, M. Kardach^{1†}, P. Sobierajska¹, A. Watras¹, J. M. Reeks¹, V. Kinzhybalo¹,

L. Marciniak^{1*} and R. J. Wiglusz^{1*}

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland

Keywords: yttrium orthovanadate, yttrium orthoarsenate, nanosized, sensor, luminescence, nanothermometry

*Corresponding authors: E-mail: <u>l.marciniak@intibs.pl</u>; r.wiglusz@intibs.pl

The integral intensities of the Eu^{3+} bands to calculate LIR values were fitted with Mott-Seitz equation (Eq. S1):

$$I = \frac{I_0}{C \cdot \exp(-\frac{W}{k \cdot T}) + 1}$$
(Eq. S1)

where: I – the intensity in temperature T, I_0 – the intensity in the initial temperature, W - the activation energy, k – Boltzmann constant, C – the dimensionless constant.

The average lifetime of the excited states of Eu^{3+} ions were calculated with the equation Eq. S2:

$$\tau_{avr} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(Eq. S2a)

where: τ_1 , τ_2 – the average time, which is in accordance with the relation $\tau = t \cdot \ln(2)$ and A_1 , A_2 – amplitude, which are the parameters of the double exponential function:

$$y = y_0 + A_1 \cdot \exp(-\frac{x}{t_1}) + A_2 \cdot \exp(-\frac{x}{t_2})$$
 (Eq. S2b)

Temperature determination uncertainty was calculated using Eq. S3:

$$\delta T = \frac{1}{S_R} \cdot \frac{\delta LIR}{LIR}$$
(Eq. S3a)

where: S_R is the relative sensitivity and $\delta LIR/LIR$ determines the uncertainty of the LIR determination where $\delta LIR/LIR$ was determined as follows:

$$\frac{\delta LIR}{LIR} = \sqrt{\left(\frac{\delta I_{Eu(exc1)}}{I_{Eu(exc1)}}\right)^2 + \left(\frac{\delta I_{Eu(exc2)}}{I_{Eu(exc2)}}\right)^2}$$
(Eq. S3b)

Thermal expansion coefficients were calculated using Eq. S4:

$$\alpha_a = \frac{\Delta a}{a} \cdot \frac{1}{\Delta T}$$
(Eq. S4a)

$$\alpha_c = \frac{\Delta c}{c} \cdot \frac{1}{\Delta T}$$
(Eq. S4b)

where *a* and *c* are the unit cell parameters and $\Delta a/\Delta c$ refers to the change in a/c value corresponding to the change of temperature ΔT .

Figure S1. The X-ray diffractograms obtained for YVO_4 , $YVO_{.75}As_{0.25}O_4$, $YV_{0.50}As_{0.50}O_4$, and $YV_{0.25}As_{0.75}O_4$ doped with 2 mol% Eu³⁺ and measured at different temperatures.

YVO ₄ : 2% Eu ³⁺	<i>a</i> [Å]	<i>c</i> [Å]	V [Å ³]	
298 K	7 1182(3)	<u>6 2945(2)</u> <u>318 9321</u>		
373 K	7.1196(3)	6.2986(2) 319 2732		
473 K	7 1221(2)	6 30(2) 319.2732 6 30(2) 310 7874		
573 K	7 1250(2)	6 3106(2) 319.7874 6 3106(2) 320 3570		
673 K	7 1279(2)	0.5100(2) $520.55706.3168(2)$ 220.0260		
773 K	7 1308(2)	0.3100(2) $320.93006.3220(2)$ 221.5062		
873 K	7.1337(2)	0.3229(2) 321.3003		
VV As 0 · 2% Fu ³⁺	a [Å]	0.3292(2) 322.0832		
200 K	<i>u</i> [A]	(2025(2)	• [A]	
298 K	7.1020(3)	6.2925(2) 317.3839		
373 K	7.1029(3)	6.2959(3) 317.6416		
473 K	7.1057(3)	6.3013(3) 318.1605		
573 K	7.1079(4)	6.3071(3) 318.6486		
673 K	7.1103(4)	6.3126(3) 319.1443		
773 K	7.1134(4)	6.3184(4) 319.7148		
873 K	7.1162(5)	6.3243(4) 320.2626		
YV _{0.5} As0.5O4: 2% Eu ³⁺	<i>a</i> [Å]	<i>c</i> [Å]	V [Å ³]	
298 K	7.0836(2)	6.2926(2)	315.7451	
373 K	7.0851(2)	6.2957(2)	316.0328	
473 K	7.0874(2)	6.3008(2) 316.4984		
573 K	7.0898(2)	6.3052(2)	316.9296	
673 K	7.0929(3)	6.3108(2) 317.4918		
773 K	7.0956(3)	6.3159(2) 317.9867		
873 K	7.0989(3)	6.3214(2) 318.5637		
YV _{0.25} As _{0.75} O ₄ : 2% Eu ³⁺	<i>a</i> [Å]	<i>c</i> [Å]	V [Å ³]	
298 K	7.0633(3)	6.2896(2)	313.7900	
373 K	7.0647(3)	6.2926(2) 314.0625		
473 K	7.0670(3)	6.2971(2) 314.4956		
573 K	7.0700(3)	6.3021(2) 315.0120		
673 K	7.0731(3)	6.3066(2) 315.5169		
773 K	7.0762(3)	6.3114(2) 316.0286		
873 K	7.0804(3)	6.3174(3)	316.7061	

Table S1. Influence of temperature on the unit cell parameters and cell volume in $YV_xAs_{1-x}O_4$:2% Eu³⁺ materials.

Figure S2. Thermal dependence of a - a) and c - b) unit cell parameters and the unit cell volume V in YV_xAs₁. _xO₄:2% Eu³⁺ materials – c).

Figure S3. The influence of V⁵⁺/As⁵⁺ ratio on the thermal expansion coefficient along a-axis and c-axis in $VV_xAs_{1-x}O_4$:2% Eu³⁺ materials.

Figure S4. The Micro-Raman measurements obtained in the temperature range from 100 K to 800 K for 2 mol% Eu^{3+} -doped YV_xAs_{1-x}O₄, where x = 0, 0.25, 0.50, 0.75, 1.

Figure S5. Energy level diagram of Eu³⁺ ions.

Figure S6. The comparison of the excitation spectra for $YV_{1-x}As_xO_4$:2% Eu³⁺ powders normalized to Eu³⁺ band correlated with ${}^{7}F_0 \rightarrow {}^{5}L_6$ transition (395 nm, ~25300 cm⁻¹) measured at 83 K.

Figure S7. The influence of As⁵⁺ concentration on the spectral position of ${}^{1}E({}^{1}T_{1}) \rightarrow {}^{1}B_{2}({}^{1}T_{2}) - (a)$ and ${}^{1}A_{2}({}^{1}T_{1}) \rightarrow {}^{1}B_{2}({}^{1}T_{2})$ excitation bands of VO₄³⁻ group – (b) and charge transfer O²⁻ $\rightarrow Eu^{3+}$ (CT) band of Eu³⁺ ions – (c) for YV_{1-x}As_xO₄:2% Eu³⁺ powders at low temperature (83 K).

Figure S8. Thermal evolution of excitation spectra for $YV_{1-x}As_xO_4$:2% Eu³⁺ powders, where x = 0 (a), 0.25 (b), 0.50 (c), 0.75 (d).

Figure S9. Thermal evolution of excitation spectra for YAsO₄:2% Eu³⁺ powder.

Figure S10. The thermal evolution of the spectral position of ${}^{1}E({}^{1}T_{1}) \rightarrow {}^{1}B_{2}({}^{1}T_{2})$ (a) and ${}^{1}A_{2}({}^{1}T_{1}) \rightarrow {}^{1}B_{2}({}^{1}T_{2})$ excitation bands of VO₄³⁻ group (b) and charge transfer O²⁻ $\rightarrow Eu^{3+}$ (CT) band of Eu³⁺ ions (c) for YV_{1-x}As_xO₄:2%

Eu³⁺.

Figure S11. The thermal evolution of the band integral intensities of ${}^{1}E({}^{1}T_{1}) \rightarrow {}^{1}B_{2}({}^{1}T_{2})$ (a) and ${}^{1}A_{2}({}^{1}T_{1}) \rightarrow {}^{1}B_{2}({}^{1}T_{2})$ excitation bands of VO₄³⁻ group (b) and charge transfer O²⁻ $\rightarrow Eu^{3+}$ (CT) band of Eu³⁺ ions (c) for YV_{1-x}As_xO₄:2% Eu³⁺.

Figure S12. Thermal evolution of emission spectra excited by $\lambda_{exc} = 350 \text{ nm}$ for $YV_{1-x}As_xO_4:2\%$ Eu³⁺ powders, where x = 0 (a), 0.25 (b), 0.50 (c), 0.75 (d).

Figure S13. Thermal evolution of emission spectra excited by $\lambda_{exc} = 395$ nm for $YV_{1-x}As_xO_4:2\%$ Eu³⁺ powders, where x = 0 (a), 0.25 (b), 0.50 (c), 0.75 (d).

Figure S14. Thermal evolution of emission spectra excited by $\lambda_{exc} = 395$ nm for YAsO₄:2% Eu³⁺ powder – a) and comparison of the thermal evolution of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ band intensities for YV_{1-x}As_xO₄:2% Eu³⁺ and YAsO₄:2% Eu³⁺ (x = 1) – b).

Figure S15. Thermal dependence of temperature estimation uncertainty of LIR($\lambda_{exc} = 350 \text{ nm} / \lambda_{exc} = 395 \text{ nm}$) for

YV_{1-x}As_xO₄:2% Eu³⁺.

Figure S16. Thermal evolution of emission spectra excited by $\lambda_{exc} = 290 \text{ nm}$ for $YV_{1-x}As_xO_4:2\% \text{ Eu}^{3+}$ powders,

where x = 0 (a), 0.25 (b), 0.50 (c), 0.75 (d).

Figure S17. Thermal dependence of temperature estimation uncertainty of LIR($\lambda_{exc} = 350 \text{ nm} / \lambda_{exc} = 290 \text{ nm}$) for $YV_{1-x}As_xO_4:2\% \text{ Eu}^{3+}.$

Table S2. Comparison of thermometric parameters of the investigated $YV_xAs_{1-x}O_4$ materials with Eu^{3+} luminescence-based materials reported in the literature.

Host material	thermometric mode with details	S _{Rmax}	$T(S_{Rmax})$	temperature range	Ref
		(%K ⁻¹)	(K)	with $S_R > 1\% K^{-1}(K)$	
CsPbBr ₃	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})/I_{QD}$	2.25	312	~230 - 400	[1]
$ScVO_4$	$I(^{5}D_{0}\rightarrow^{7}F_{4})$	7.19	113	113 - 300	[2]
GdAlO ₃	$\tau(^5D_0)$	2.28	793	~725 - 793	[3]
LiYO ₂	$LIR = I({}^{5}D_0 \rightarrow {}^{7}F_1)(T(0 \rightarrow 1))$	11.8	295	250-303	[4]
	$/I(^{5}D_{0}\rightarrow ^{7}F_{1})(M(0\rightarrow 2))$				
NaYF ₄	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{4})(\lambda_{exc} = ESA)$	4.11	213	~200-400	[5]
	$/I(^{5}D_{0}\rightarrow^{7}F_{4})(\lambda_{exc}=GSA)$				
$NaGdF_4$	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{4}) (\lambda_{exc} = ESA)$	16.9	163	~200-300	[5]
	$/I(^{5}D_{0}\rightarrow^{7}F_{4}) (\lambda_{exc}=GSA)$				
Y ₃ Al ₅ O ₁₂	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{4}) / I(Ti^{3+} \rightarrow O^{2-}$	1.37	386	~290 - 470	[6]

Y ₂ O ₃	LIR = I (${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$)(Er ³⁺)	1.4	303	303 - 410	[7]
	$/I(^{5}D_{0}\rightarrow^{7}F_{2})$				
GdNbO ₄	$LIR = I(^{3}P_{1} \rightarrow ^{1}S_{0})(Bi^{3+}) / $	3.81	300	300-525	[8]
	$I({}^{5}D_{0} \rightarrow {}^{7}F_{4})$				
YVO_4	$LIR = I(host)/I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$	4.5	123	123 - 323	[9]
YVO_4	$LIR = I({}^{5}D_{1} \rightarrow {}^{7}F_{1}) / I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$	~2.7	300	300 - 500	[10]
YVO ₄	$LIR = I({}^{5}D_{1} \rightarrow {}^{7}F_{1}) / I({}^{5}D_{0} \rightarrow {}^{7}F_{4})$	~0.62	~500	-	[11]
YVO ₄	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})(\lambda_{ex} = 342 \text{ nm})$	3.0	233	183-348	[12]
	$/I(^{5}D_{0}\rightarrow^{7}F_{2})(\lambda_{exc}=266 \text{ nm})$				
YVO_4	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})(\lambda_{exc} = 350 \text{ nm})$	2.55	233	175-413	This
	$/I(^{5}D_{0}\rightarrow^{7}F_{2})(\lambda_{exc}=395 \text{ nm})$				work
$YV_{0.25}As_{0.75}O_4$	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})(\lambda_{exc} = 350 \text{ nm})$	1.66	335	270-486	This
	$/I(^{5}D_{0}\rightarrow^{7}F_{2})(\lambda_{exc}=395 \text{ nm})$				work
$YV_{0.75}As_{0.25}O_4$	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})(\lambda_{exc} = 350 \text{ nm})$	4.05	293	250-416	This
	$/I(^{5}D_{0}\rightarrow^{7}F_{2})(\lambda_{exc}=290 \text{ nm})$				work
$YV_{0.25}As_{0.75}O_4$	$LIR = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})(\lambda_{exc} = 350 \text{ nm})$	2.02	387	315-516	This
	$/I(^{5}D_{0}\rightarrow^{7}F_{2})(\lambda_{exc}=290 \text{ nm})$				work

)(Ti ³⁺)	

Figure S18. Thermal evolution of the luminescent decays of Eu^{3+} excited states for $YV_{1-x}As_xO_4$:2% Eu^{3+} powders, where x = 0 (a), 0.25 (b), 0.50 (c), 0.75 (d).

Figure S19. Thermal evolution of the luminescent decays – a) and the average lifetimes of Eu^{3+} excited states for YAsO₄:2% Eu^{3+} powder – b).

References

- X. Li, Y. Yu, J. Hong, Z. Feng, X. Guan, D. Chen, Z. Zheng, Optical temperature sensing of Eu³⁺-doped oxyhalide glasses containing CsPbBr₃ perovskite quantum dots, J. Lumin. 219 (2020) 116897.
- [2] M.T. Abbas, N.Z. Khan, N. Muhammad, I. Mehmood, J. Mao, S.A. Khan, Temperature sensing performance of ScVO₄: Eu³⁺ phosphors by employing ground state thermal coupling approach, J. Alloys Compd. 906 (2022) 164340.
- [3] V. Lojpur, S. Ćulubrk, M. Medić, M. Dramicanin, Luminescence thermometry with Eu³⁺ doped GdAlO₃, J. Lumin. 170 (2016) 467–471.
- [4] L. Marciniak, W. Piotrowski, M. Szalkowski, V. Kinzhybalo, M. Drozd, M.
 Dramicanin, A. Bednarkiewicz, Highly sensitive luminescence nanothermometry and thermal imaging facilitated by phase transition, Chem. Eng. J. 427 (2022) 131941.
- [5] K. Trejgis, K. Ledwa, A. Bednarkiewicz, L. Marciniak, Impact of host composition and dopant ion concentration on the thermometric properties of a Eu³⁺ activated fluoridebased single-band ratiometric luminescent thermometer, J. Alloys Compd. 898 (2022) 162839..
- [6] J. Drabik, L. Marciniak, The influence of Eu³⁺ concentration on the spectroscopic properties of YAG:Ti, Eu³⁺ nanocrystalline luminescent thermometer, J. Lumin. 208 (2019) 213–217.
- [7] M.D. Rabasović, B.D. Murić, V. Čelebonović, M. Mitrić, B.M. Jelenković, M.G.
 Nikolić, Luminescence thermometry via the two-dopant intensity ratio of Y₂O₃:Er³⁺,
 Eu³⁺, J. Phys. D. Appl. Phys. 49 (2016) 485104.
- [8] J. Xue, H.M. Noh, B.C. Choi, S.H. Park, J.H. Kim, J.H. Jeong, P. Du, Dual-functional

of non-contact thermometry and field emission displays via efficient $Bi^{3+} \rightarrow Eu^{3+}$ energy transfer in emitting-color tunable GdNbO₄ phosphors, Chem. Eng. J. 382 (2020) 122861.

- [9] I.E. Kolesnikov, D. V Mamonova, M.A. Kurochkin, E.Y. Kolesnikov, E. Lähderanta,
 Optical Thermometry by Monitoring Dual Emissions from YVO₄ and Eu³⁺ in
 YVO₄:Eu³⁺ Nanoparticles, ACS Appl. Nano Mater. 4 (2021) 1959–1966.
- [10] I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin, D. V Mamonova, E.Y.
 Kolesnikov, E. Lähderanta, Ratiometric Optical Thermometry Based on Emission and Excitation Spectra of YVO₄:Eu³⁺ Nanophosphors, J. Phys. Chem. C. 123 (2019) 5136– 5143.
- [11] A. Ćirić, S. Stojadinović, M.D. Dramićanin, Time-integrated luminescence thermometry of Eu³⁺ and Dy³⁺ doped YVO₄, Sensors Actuators A Phys. 295 (2019) 450–455.
- W. Piotrowski, L. Dalipi, K. Elzbieciak-Piecka, A. Bednarkiewicz, B. Fond, L.
 Marciniak, Self-Referenced Temperature Imaging with Dual Light Emitting Diode
 Excitation and Single-Band Emission of AVO₄ :Eu³⁺ (A=Y, La, Lu, Gd)
 Nanophosphors , Adv. Photonics Res. 3 (2022) 2100139.