Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2022

Equilibrating the Key Parameters of Thermally Activated Delayed Fluorescence
Emitters towards Efficient Red/Near-Infrared OLEDs

Jinming Fan,*® Yulin Xu,* Nengquan Li,* Jingsheng Miao,* Changjiang Zhou,*

Tengxiao Liu,? Minrong Zhu,” and Xiaojun Yin ¢*

@Shenzhen Key Laboratory of New Information Display and Storage Materials,
College of Materials Science and Engineering, Shenzhen University, Shenzhen
518060, People’s Republic of China.

bCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen
518060, People’s Republic of China.

“College of Chemical Engineering, Zhejiang University of Technology, Hangzhou,
310014, PR China.

dCollege of Chemistry and Environmental Science, Wuhan Institute of Bioengineering,
Wubhan, 430415, People’s Republic of China.

E-Mail: xiaojunyin@szu.edu.cn



mailto:xiaojunyin@szu.edu.cn

Experimental Section

I'H NMR and 3 C NMR spectra were recorded on Bruker AV 400M, 500M, 600M
NMR spectrometer at room temperature using CDCl;, DMSO-d; as solvent, and
referenced externally to SiMe,. The multiplicities of the signals are indicated as “s”,
“d’, “t* or “m”, which stand for singlet, doublet, triplet, and multiplet, respectively.
High-resolution mass spectra (HRMS) were recorded on a Bruker MAXIS
spectrometer in an APCI positive mode. Thermogravimetric analysis (TGA) was
recorded on a TA Q50 instrument under nitrogen atmosphere at a heating rate of 10
°C/min from 25 to 800 °C. The temperature of degradation (7) was correlated to a
5% weight loss. Differential Scanning Calorimetry (DSC) were carried out on a TA
Q200. The glass transition temperature (7,) was determined from the second heating
scan at a heating rate of 10 °C/min from 25 to 400 °C. Cyclic voltammetry (CV)
measurements were carried out on a CHI600 electrochemical analyzer (Chenhua,
China) at room temperature, with a conventional three-electrode system consisting of
a glassy carbon working electrode, a platinum wire auxiliary electrode, and an
Ag/AgCl standard electrode was used as the reference electrode. The supporting
electrolyte was 0.1 M tetrabutylammonium hexafluorophosphate (n-Buy;NPF¢) in
anhydrous dichloromethane solution, and ferrocene was added as an internal standard
in the whole measurement. UV-Vis spectra in solution were recorded on a UV-3100
spectrophotometer at room temperature. Room-temperature photoluminescence
spectra and phosphorescence spectra were measured on a Hitachi F-7000 fluorescence
spectrophotometer with xenon lamp as the light source. The absolute fluorescence
quantum yields (PLQY) were measured on a Quantaurus-QY measurement system
(C9920-02, Hamamatsu Photonics) equipped with a calibrated integrating sphere.
During the PLQY measurements, the integrating sphere was purged with pure and dry
argon to maintain an inert environment. The lifetimes of fluorescence and delayed

fluorescence were performed on PicoQuant Fluotime300.



Theoretical Calculations Method.

Density functional theory (DFT) calculations of the geometrical and electronic
properties of the three emitters at ground-states were performed by using Gaussian 16
software package at the B3LYP/def2-SVP level including Grimme’s dispersion
correction. Time-dependent DFT (TD-DFT) calculations with PBEO functional and
def2-SVP basis set were then performed to further study the properties at excited
states. All calculations were performed in the gas phase, and visualized using

GaussView 6.0. The wave function analysis was carried out by using Multiwfn 3.8.[1]

Analysis of Rate Constants:
The rate constants of radiative decay () and nonradiative decay (%, ;) from S; to Sy
states, the rate constants of intersystem crossing (k;sc) and reverse intersystem

crossing (kgsc) were calculated from the following six equations:

k,=1/t, 1)
kq=1/14 ?
kes= Dk, + Pakyg = Dk, K
R s =[(1=PpL) / Ppr] ks ﬂ
kisc = kp - kr,S - knr,S ﬂ
krisc = (kpka®a)/ (kiscPp) (6)

Where 7, and 7; represent the prompt and decay fluorescence lifetime, which
determined from transient PL spectra. The kp and kd represent the decay rate
constants for prompt and delayed fluorescence, respectively. @, and @, indicate
prompt and delayed fluorescence components and can be distinguished from the total
@p; by comparing the integrated intensities of prompt and delayed components in the

transient PL spectra.



Synthesis of Materials.

All reagents and chemicals (at least analytical grade) were purchased from
commercial sources and used without further purification. Solvents were all dried and
degassed using the Grubbs-type solvent purification system. The dpTPAAP was
synthesized according to the previously literatures [?1. Schlenk technology was strictly
performed under argon conditions in all reactions. Air- and moisture-sensitive liquids
and solutions were transferred via syringes. The final products were firstly purified by
column chromatography, and then further refined by temperature-gradient vacuum

sublimation (Scheme S1).
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Scheme S1. Synthesis routes of the two red TADF emitters.

General procedure for the synthesis of dbfTPAAP (Path A).

Synthesis of 4-(benzofuran-2-yl)-N-(4-(benzofuran-2-yl)phenyl)-N-(4-bromophenyl)aniline
(A1)

The mixture of tris(4-bromophenyl)amine (leq, 4 mmol, 1.93g), benzofuran-2-
boronic acid (3 eq, 12 mmol, 1.94g), Pd(PPh;), (4 %, 0.16 mmol, 0.185 g), K,CO; (4

eq, 16 mmol, 2.2 g) was dissolved in a mixed solvent composed of toluene/THF/H,O



(5/5/1, 20/20/4 ml). The reaction mixture was allowed to stir at 80 °C for 12 h under
Ar. Then the reaction mixture was cooled at room temperature and filtered through
Celite. Filtrate was concentrated under reduced pressure, the residue was dissolved in
CH,CI, (100 mL x 3), washed with water and dried over Na,SO4. Combined organic
layers were evaporated under reduced pressure, and the residue was purified by
column chromatography on silica [CH,Cl,/Petroleum ether = 1/20 ~1/10] to provide
pure Al (white solid, 78%, 1.73g).

Synthesis of 4-(benzofuran-2-yl)-N-(4-(benzofuran-2-yl)phenyl)-N-(4-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)phenyl)aniline (A2)

The mixture of Al (leq, 2 mmol, 1.11g), bis(pinacolato)diboron (3 eq, 6 mmol,
1.53g), Pd(dppf)ClL, (5 %, 0.1 mmol, 0.073 g), KOAc (5 eq, 10 mmol, 1 g) was
dissolved in a mixed solvent composed of dioxane (30 ml). The reaction mixture was
allowed to stir at 110 °C for 12 h under Ar. Then the reaction mixture was cooled at
room temperature and filtered through Celite. Filtrate was concentrated under reduced
pressure, the residue was dissolved in CH,Cl, (30 mL x 3), washed with water and
dried over Na,SO,. Combined organic layers were evaporated under reduced pressure,
and the residue was purified by column chromatography on silica [CH,Cl,/Petroleum

ether = 1/3 ~1/1] to provide pure A2 (yellow solid, 95%, 1.15g).

Synthesis of 5-(4-(bis(4-(benzofuran-2-yl)phenyl)amino)phenyl) acenaphthy-lene-1,2-dione
(A3)

The mixture of A2 (leq, 2 mmol, 1.2g), 5-bromoacenaphthylene-1,2-dione (1 eq, 2
mmol, 0.53g), Pd(PPh;)4 (5 %, 0.1 mmol, 0.12 g), K,CO; (5 eq, 10 mmol, 1.4 g) was
dissolved in a mixed solvent composed of dioxane/H,O (10/10 ml). The reaction
mixture was allowed to stir at 110 °C for 12 h under Ar. Then the reaction mixture
was cooled at room temperature and filtered through Celite. Filtrate was concentrated
under reduced pressure, the residue was dissolved in CH,Cl, (30 mL x 3), washed
with water and dried over Na,SO,4. Combined organic layers were evaporated under
reduced pressure, and the residue was purified by column chromatography on silica

[CH,Cl,/Petroleum ether = 1/5 ~1/1] to provide pure A3 (red solid, 76%, 1g).



Synthesis of 3-(4-(bis(4-(benzofuran-2-yl)phenyl)amino)phenyl)acenaphtho[1,2-b] pyrazine -
8,9-dicarbonitrile (dbfTPAAP)

The mixture of A3 (leq, 2 mmol, 1.3g) and 2,3-diaminomaleonitrile (1 eq, 2 mmol,
0.22¢g) was dissolved in AcOH (20 ml). The reaction mixture was allowed to stir at
120 °C for 36 h under Ar. Then the reaction mixture was cooled at room temperature
and concentrated under reduced pressure, the residue was dissolved in CH,Cl, (30 mL
x 3), washed with water and dried over Na,SO4. Combined organic layers were
evaporated under reduced pressure, and the residue was purified by column
chromatography on silica [CH,Cl,/Petroleum ether = 1/3 ~ CH,Cl,] to provide pure
dbfTPAAP (black solid, 67%, 0.98g).

General procedure for the synthesis of dqpnTPAAP (Path B).

Synthesis of N,N-di([1,1'-biphenyl]-4-yl)-5-bromonaphthalen-1-amine (B1)

The mixture of 1-bromo-4-iodonaphthalene (leq, 5 mmol, 1.65g), bis(4-
biphenylyl)amine (1 eq, 5 mmol, 1.60g), Cul (1 %, 0.05 mmol, 0.01 g), trans-1,2-
cyclohexanediamine (10 %, 0.5 mmol, 0.06 g) and ~-BuOK (1.5 eq, 7.5 mmol, 0.84 g)
was dissolved in a mixed solvent composed of dioxane (15 ml). The reaction mixture
was allowed to stir at 100 °C for 24 h under Ar. Then the reaction mixture was cooled
at room temperature and filtered through Celite. Filtrate was concentrated under
reduced pressure, the residue was dissolved in CH,Cl, (100 mL x 3), washed with
water and dried over Na,SO4. Combined organic layers were evaporated under
reduced pressure, and the residue was purified by column chromatography on silica

CH,Cl,/Petroleum ether = 1/20 ~1/10] to provide pure B1 (white solid, 86%, 2.26g).
g

Synthesis of N,N-di([1,1'-biphenyl]-4-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yDnaphthalen-1-amine (B2)

The mixture of B1 (leq, 2 mmol, 1.05g), bis(pinacolato)diboron (3 eq, 6 mmol,
1.53g), Pd(dppf)ClL, (5 %, 0.1 mmol, 0.073 g), KOAc (5 eq, 10 mmol, 1 g) was



dissolved in a mixed solvent composed of dioxane (30 ml). The reaction mixture was
allowed to stir at 110 °C for 12 h under Ar. Then the reaction mixture was cooled at
room temperature and filtered through Celite. Filtrate was concentrated under reduced
pressure, the residue was dissolved in CH,Cl, (30 mL x 3), washed with water and
dried over Na2SO4. Combined organic layers were evaporated under reduced
pressure, and the residue was purified by column chromatography on silica

CH,Cl,/Petroleum ether = 1/10 ~1/5] to provide pure B2 (yellow solid, 77%, 0.88g).
g

Synthesis of 5-(5-(di([1,1'-biphenyl]-4-yl)amino)naphthalen-1-yl)acenaphthylene-1,2-dione
(B3)

The mixture of B2 (leq, 2 mmol, 1.15g), 5-bromoacenaphthylene-1,2-dione (1 eq, 2
mmol, 0.53g), Pd(PPh;), (5 %, 0.1 mmol, 0.12 g), K,CO; (5 eq, 10 mmol, 1.4 g) was
dissolved in a mixed solvent composed of dioxane/H,O (10/10 ml). The reaction
mixture was allowed to stir at 110 °C for 12 h under Ar. Then the reaction mixture
was cooled at room temperature and filtered through Celite. Filtrate was concentrated
under reduced pressure, the residue was dissolved in CH,Cl, (3 mL x 3), washed with
water and dried over Na,SO4. Combined organic layers were evaporated under
reduced pressure, and the residue was purified by column chromatography on silica

[CH,Cl,/Petroleum ether = 1/1 ~ CH,Cl,] to provide pure B3 (red solid, 56%, 0.71g).

Synthesis of  3-(5-(di(|1,1'-biphenyl]-4-yl)amino)naphthalen-1-yl)acenaphtho[1,2-b]py-
razine-8,9-dicarbonitrile (dpnTPAAP)

The mixture of B3 (leq, 2 mmol, 1.25g) and 2,3-diaminomaleonitrile (1 eq, 2 mmol,
0.22g) was dissolved in AcOH (20 ml). The reaction mixture was allowed to stir at
120 °C for 36 h under Ar. Then the reaction mixture was cooled at room temperature
and concentrated under reduced pressure, the residue was dissolved in CH,Cl, (30 mL
x 3), washed with water and dried over Na,SO4. Combined organic layers were
evaporated under reduced pressure, and the residue was purified by column
chromatography on silica [CH,Cl,/Petroleum ether = 1/3 ~ CH,Cl,] to provide pure
dpnTPAAP (black solid, 58%, 0.81g).



NMR and HRMS data:

4-(Benzofuran-2-yl)-N-(4-(benzofuran-2-yl)phenyl)-N-(4-bromophenyl)aniline (A1)
Br 'H NMR (500 MHz, Chloroform-d) 6 7.82 — 7.73 (m,
@ 4H), 7.61 — 7.55 (m, 2H), 7.52 (dd, J = 7.9, 1.1 Hz, 2H),
N 7.46 —7.39 (m, 2H), 7.28 (ddd, J = 8.1, 7.2, 1.5 Hz, 2H),
(o 0 723 (td, J= 74, 1.1 Hz, 2H), 7.21 — 7.14 (m, 4H), 7.08
—7.02 (m, 2H), 6.95 (d, J = 0.9 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) &
155.78, 154.98, 147.28, 146.22, 132.69, 129.52, 126.44, 126.27, 125.58, 124.21,

123.09, 120.88, 116.44, 111.22, 100.70. HRMS (APCI) m/z caled for. Cs4H,,BrNO,
[M+H]* 556.0907, found 556.0902.

4-(Benzofuran-2-yl)-N-(4-(benzofuran-2-yl)phenyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)phenyl)aniline (A2)

'H NMR (500 MHz, Chloroform-d) 4 7.76 (t, J = 8.5 Hz,
©g® 6H), 7.57 (dd, J = 7.5, 1.6 Hz, 2H), 7.54 — 7.47 (m, 2H),
© 7.29 — 7.25 (m, 3H), 7.25 — 7.13 (m, 8H), 6.95 (s, 2H),

N 136 (s, 12H). 13C NMR (126 MHz, Chloroform-d) &
@ © @ 155.88, 154.98, 149.78, 147.40, 136.25, 129.55, 126.20,
125.61, 124.69, 124.16, 123.35, 123.06, 120.86, 111.21, 100.66, 83.88, 25.02. HRMS
(APCI) m/z calcd for. C4H34BNO4 [M+H]" 604.2654, found 604.2659.

5-(4-(Bis(4-(benzofuran-2-yl)phenyl)amino)phenyl)acenaphthy-lene-1,2-dione (A3)

Q0 'H NMR (600 MHz, DMSO-ds) & 8.44 (d, J = 8.6 Hz,
[

00 1H), 8.11 (dd, J=11.2, 7.2 Hz, 2H), 7.93 — 7.91 (m, 4H),

) 7.89 (d, J = 7.3 Hz, 1H), 7.70 — 7.67 (m, 2H), 7.65 —

® N ® 7.59 (m, SH), 7.35 — 7.33 (m, 3H), 7.30 — 7.24 (m, 9H).
A *O 13C NMR (151 MHz, DMSO-ds) & 188.07, 187.21,

155.15, 154.29, 146.94, 130.98, 130.58, 129.44, 129.11,
128.99, 128.77, 128.41, 128.15, 126.34, 124.98, 124.50, 124.45, 124.25, 123.32,



121.52, 121.47, 121.09, 111.11, 101.31. HRMS (APCI) m/z caled for. C4sH,7NO4
[M+H]" 658.2013, found 658.2018.

3-(4-(Bis(4-(benzofuran-2-yl)phenyl)amino)phenyl)acenaphtho[1,2-b]pyrazine-8,9-

dicarbonitrile (dbfTPAAP)

NC CN 'H NMR (500 MHz, Chloroform-d) & 8.41 (d, J = 2.1

NN Hz, 1H), 8.39 (d, J = 6.9 Hz, 2H), 7.89 — 7.81 (m, 2H),

@ 7.73 — 7.69 (m, 4H), 7.55 — 7.49 (m, 2H), 7.47 — 7.45

i (m, 2H), 7.41 — 7.38 (m, 2H), 7.32 — 7.28 (m, 2H), 7.22

® N » ~7.20 (m, 3H), 7.15 (dtd, J = 14.8, 7.7, 1.3 Hz, 5H),

‘O lo 6.84 (d, J = 0.9 Hz, 2H). 3C NMR (126 MHz,

Chloroform-d) 6 155.60, 154.93, 147.14, 146.42, 132.55,
132.15, 131.58, 129.81, 129.45, 129.41, 129.37, 128.76, 127.16, 126.33, 126.12,
126.01, 124.91, 124.86, 124.33, 124.04, 123.15, 120.92, 111.20, 100.87. HRMS
(APCI) m/z calcd for. CsoHy7NsO, [M+H]" 730.2238, found 730.2227. Elemental
analysis (%) calcd for CsoH,7Ns5O,: C 82.29, H 3.73, N 9.60; found: C 82.60, H 4.12,
No.16.

N,N-Di([1,1'-biphenyl]-4-yl)-5-bromonaphthalen-1-amine (B1)
Br 'H NMR (500 MHz, Chloroform-d) é 8.36 — 8.27 (m, 1H),
8.10 — 7.99 (m, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.61 (ddd, J =
N 8.4, 6.8, 1.2 Hz, 1H), 7.59 — 7.54 (m, 4H), 7.50 — 7.46 (m,
4H), 7.43 (q, J = 7.6 Hz, 5H), 7.34 — 7.29 (m, 2H), 7.28 (d, J
= 7.9 Hz, 1H), 7.17 — 7.11 (m, 4H). 3C NMR (126 MHz,
Chloroform-d) o6 147.47, 143.47, 140.66, 134.93, 130.58, 128.89, 128.00, 127.96,
127.83, 127.51, 126.96, 126.74, 124.92, 122.29, 120.82. HRMS (APCI) m/z calcd for.

C34H4BrN [M+H]" 526.1165, found 526.1170.

N,N-Di([1,1'-biphenyl]-4-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-

amine (B2)



'H NMR (500 MHz, Chloroform-d) & 8.90 — 8.82 (m, 1H),

Qo 8.13 (d, J = 7.4 Hz, 1H), 8.06 — 8.00 (m, 1H), 7.59 — 7.55 (m,

) 4H), 7.55 — 7.51 (m, 1H), 7.49 — 7.44 (m, 4H), 741 (qd, J =
N 7.3, 1.6 Hz, 6H), 7.30 (td, J = 7.3, 1.3 Hz, 2H), 7.17 — 7.11
0 G (m, 4H), 1.46 (s, 12H). 3C NMR (126 MHz, Chloroform-d)
5 147.63, 140.78, 136.37, 134.74, 129.14, 128.86, 127.86, 126.87, 126.80, 126.75,

126.37, 126.26, 124.60, 122.39, 83.97, 25.12. HRMS (APCI) m/z caled for.
C4H3¢BNO, [M+H]"574.2912, found 574.2921.

5-(5-(Di([1,1'-biphenyl]-4-yl)amino)naphthalen-1-yl)acenaphthylene-1,2-dione (B3)
0o. O 'H NMR (400 MHz, Chloroform-d) & 8.23 (d, J = 7.2 Hz,
O.e 1H), 8.14 (dd, J = 16.0, 7.7 Hz, 2H), 7.93 (dd, J = 7.9, 3.0
Hz, 2H), 7.72 (dd, J = 8.5, 7.0 Hz, 1H), 7.55 (d, J = 8.2 Hz,
i 6H), 7.50 (d, J = 8.5 Hz, 5H), 7.39 (t, J = 7.7 Hz, 5H), 7.36
—7.33 (m, 1H), 7.29 (d, /= 7.3 Hz, 2H), 7.21 (d, /= 8.3 Hz,
4H). BC NMR (101 MHz, Chloroform-d) & 147.69, 144.99,
144.65, 140.63, 135.09, 134.05, 132.11, 131.41, 130.52, 128.98, 128.91, 128.66,
128.52, 128.04, 127.13, 127.04, 127.01, 126.73, 126.67, 126.41, 125.13, 122.57,
122.36, 122.07. HRMS (APCI) m/z caled for. C4HoNO, [M+H]" 628.2272, found
628.2271.

3-(5-(Di([1,1'-biphenyl]-4-yl)amino)naphthalen-1-yl)acenaphtho[1,2-b]py-razine-8,9-
dicarbonitrile (dpnTPAAP)

'H NMR (500 MHz, Chloroform-d) & 8.66 (d, J = 7.2 Hz,

NC CN
N' N 1H), 8.57 (d, J = 7.0 Hz, 1H), 8.19 (d, J = 8.5 Hz, 1H), 8.06
O‘G (dd, J = 14.7, 7.8 Hz, 2H), 7.88 (dd, J = 8.4, 7.0 Hz, 1H),

@ 0 7.63 —7.56 (m, 7TH), 7.56 — 7.52 (m, 4H), 7.43 (t, J= 7.7 Hz,
SH), 7.38 (s, 1H), 7.35 — 7.30 (m, 2H), 7.26 — 7.23 (m, 4H).

N
13C NMR (126 MHz, Chloroform-d) & 154.90, 154.59,
150.07, 147.70, 145.52, 140.66, 135.70, 135.18, 135.15,

134.27, 133.92, 132.43, 131.60, 131.43, 131.38, 130.19, 129.96, 129.91, 129.59,



129.37, 128.94, 128.20, 128.07, 127.12, 127.05, 127.02, 126.77, 126.73, 126.53,
126.18, 125.07, 122.63, 114.37. HRMS (APCI) m/z calcd for. CsoHyoNs [M+H]*
700.2496, found 700.2498. Elemental analysis (%) calcd for CsoHy9Ns: C 85.82, H
4.18, N 10.01; found: C 85.81, H 4.62, N 9.64.

3-(4-(Di([1,1'-biphenyl]-4-yl)amino)phenyl)acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile
(dpTPAAP)

NG &N 'H NMR (400 MHz, Chloroform-d) & 8.54 (dd, J = 7.6, 1.7
N

’ \N
Hz, 3H), 8.00 — 7.91 (m, 2H), 7.64 — 7.55 (m, 10H), 7.48 —
OG 7.43 (m, 4H), 7.40 — 7.29 (m, 8H). [

Sade’



NMR and HRMS Spectra.
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Figure S1.'H NMR of A1 in CDCls.
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Acquisition Parameter
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Figure S3. HRMS (APCI) of A1 in MeOH.
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Acquisition Parameter
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Figure S6. HRMS (APCI) of A2 in MeOH.
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Figure S7.'H NMR of A3 in DMSO-d.
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Figure S8.3C NMR of A2 in DMSO-d.
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Figure S11.3C NMR of dbfTPAAP in CDCl;.
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Figure S14. 3C NMR of B1 in CDCls.
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Figure S15. HRMS (APCI) of B1 in MeOH.
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Figure S16. 'H NMR of B2 in CDCl;.
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Figure S17. 3C NMR of B2 in CDCls.
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Figure S18. HRMS (APCI) of B2 in MeOH.
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Figure S21. HRMS (APCI) of B3 in MeOH.
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Figure S23.3C NMR of dpnTPAAP in CDCl;.



Acquisition Parameter

Source Type APCI len Polarity Positive Set Nebulizer 1.6 Bar
Focus Mot active Set Capillary 2000 vV Set Dry Heater 200 °C
Scan Begin 100 mfz Set End Plate Offset -500 W Set Dry Gas 2.5 limin
Scan End 1100 miz Set Collision Cell RF 200.0 Vipp Set Divert Valve Waste
InTensé_; +MS, 0. 1min #4]
X0 700.2498
1.5
1.0
701.2530
DS
7022588
| 703.2595
|
0.0 +=preeer ri'lL'/\."‘-nf""‘!‘lL'._'v-r - S ey
Too 7 702 703 704 miz

Figure S24. HRMS (APCI) of dpnTPAAP in MeOH.
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Figure S25. 'H NMR of dpTPAAP in CDCl;.
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Figure S26. Visualization diagram of the highest occupied molecular orbitals
(HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) of the investigated

molecules.




Table S1. Crystal data and structure refinement for dbfTPAAP.

Identification code
Empirical formula
CCDC No.
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

o

o/
B/

v/°

Volume/A3

Z

Pearcg/cm’

wmm-!

F(000)

Crystal size/mm3

Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (1)]
Final R indexes [all data]
Largest diff. peak/hole / e A

063063 Om
CsoHy7N50,
2184275
729.76

170
monoclinic
P2,/n
10.5206(17)
10.0672(14)
34.605(4)

90

94.273(5)

90

3655.0(9)

4

1.326

0.083

1512.0

0.19 x 0.08 % 0.05
MoKa (A =0.71073)
3.972 t0 49.424

-12<h<11,-11<k<11,-40<1<40

22050

6216 [Rip; = 0.1479, Ryigma = 0.1579]

6216/0/514

1.020

R;=0.0754, wR, = 0.1327
R; =0.2004, wR, = 0.1854
0.29/-0.38
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Figure S27. TGA result of dbfTPAAP and dpnTPAAP, the decomposition
temperatures (T,) of dbfTPAAP and dpnTPAAP are 480 °C and 425 °C,
respectively. dpTPAAP was 440 °C.
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Figure S28. Differential Scanning Calorimetry (DSC) result of dbfTPAAP,
dpnTPAAP and dpTPAAP.
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Figure S29. Cyclic voltammetry analysis of dbfTPAAP, dpnTPAAP and dpTPAAP.
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Figure S30. Fluorescence emission spectra in different polarity solvent, a) dpTPAAP,

b) dbfTPAAP and c) dpnTPAAP.
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Figure S31. Low-temperature photoluminescence (77K) spectra of dbfTPAAP,
dpnTPAAP and dpTPAAP in toluene (10 -* mol L!). The onset energy of LTPL
spectra were used to determine the S; and 7; energy level. dbfTPAAP (2.26, 2.16),
dpnTPAAP (2.27, 2.23) and dpTPAAP (2.26, 2.12), respectively. The corresponding
AEgt was measured to be 0.10 eV, 0.04 eV and 0.14 eV.
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Figure S32. The lifetimes (303K) of the prompt (z,) components of the a) dbfTPAAP,
b) dpnTPAAP and c) dpTPAAP.
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Figure S33. The external quantum efficiency (EQE) versus brightness of the two non-
doped NIR OLEDs, insert: the EL spectra of the two devices. The devices
configuration are “ITO/ HATCN (5 nm)/ TAPC (30 nm)/ TCTA (15 nm)/ mCBP (10
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