Supporting Information for

Photo-responsive liquid crystalline polymer from renewable furfural derivatives of dimethyl 2,5-furandicarboxylate via catalytic carbonylative esterification

Tian Wang,[†] Jinlian Zhu,[†] Kaiwei Zhang, Jing Wang, Yonggui Liao,* Guochuan Yin*, and Xiaolin Xie

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Contents

Table S1 The influence of ligand loadings on the catalytic efficiency in DMFD synthesis	2
Table S2 The influence of temperature on the catalytic efficiency in DMFD synthesis	2
Fig. S1 ¹ H and ¹³ C NMR spectra of methyl 5-bromofuroate	3
Fig. S2. ¹ H and ¹³ C NMR spectra of DMFD	4
Fig. S3 ¹ H and ¹³ C NMR spectra of Azo-C ₁₂	5
Fig. S4 ESI-MS spectrum of Azo-C ₁₂	6
Fig. S5 ¹ H NMR spectrum of PAzo-DMFD	7
Fig. S6 UV-Vis spectra of PAzo-DMFD film before and after UV light and then visible light	7
Fig. S7 ¹ H-NMR spectra of PAzo-DMFD in CDCl ₃ before and after 365 nm UV irradiation	8
Fig. S8 POM images of PAzo-DMFD upon UV light irradiation at 50 °C and upon heating to 1	20
°C and then cooling to 50 °C after UV irradiation.	8

Entry	Ligand	Conv.(%)	Yield (%)	
			DMFD	methyl-furoate
1	0	21	11	9
2	5%	85	80	5
3	10%	93	89	3
4	15%	98	95	2
5	20%	98	96	2

Table S1 The influence of ligand loadings on the catalytic efficiency in DMFD synthesis

Conditions: methyl 5-bromofuroate (0.2 mmol), 5% PdCl₂ loading (10 µmol), Sphos, Et₃N (0.6 mmol), CH₃OH (2 mL), 70 °C, 24 h, CO balloon.

Entry	<i>T</i> (°C)	Conv.(%)	Yield (%)	
			DMFD	methyl-furoate
1	30	16	5	10
2	40	20	12	6
3	50	45	41	3
4	60	92	90	2
5	70	98	95	2

Table S2 The influence of temperature on the catalytic efficiency in DMFD synthesis

Conditions: methyl 5-bromofuroate (0.2 mmol), PdCl₂ (10 µmol), Sphos (30 µmol), TEA (0.6 mmol), CH₃OH (2 mL), 24 h, *T*, CO balloon.

¹H NMR (400 MHz, DMSO-*d*₆), δ 7.36 (d, J = 3.6 Hz, 1H), 6.85 (d, J = 3.6 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆), δ 157.75, 146.01, 127.98, 121.19, 115.04, 52.47.

Fig. S2 ¹H and ¹³C NMR spectra of DMFD

¹H NMR (400 MHz, DMSO-*d*₆), δ 7.44 (s, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆), δ 158.29, 146.48, 119.49, 52.85.

Fig. S3 ¹H and ¹³C NMR spectra of Azo- C_{12}

¹H NMR (400 MHz, CDCl₃), δ 7.94–7.91 (d, J = 8.9 Hz, 4H, Ar–N), 7.04–7.02 (d, J = 12.1 Hz, 4H, Ar–O), 4.24–4.22 (t, 4H, Ar–O–CH₂), 3.92–3.90 (t, 4H, –CH₂O), 3.77–3.62 (m, 16H, CH₂CH₂–O–CH₂CH₂).

¹³C NMR (101 MHz, CDCl₃), *δ* 160.7, 147.2, 124.3, 114.8, 76.8, 72.5, 70.9, 69.6, 67.6, 61.8.

Fig. S4 ESI-MS spectrum of Azo- C_{12}

Fig. S5 ¹H NMR spectrum of PAzo-DMFD

¹H NMR (400MHz CDCl₃): *δ* 7.87–7.85 (m, 4H, Ar–N), 7.20 (s, 2H, furan ring), 7.03–6.98 (t, 4H, Ar–O), 4.49–4.47 (m, 4H, Ar–O–CH₂), 4.21–4.18 (m, 4H, –CH₂O), 3.89–3.63 (m, 16H, –CH₂CH₂–O–CH₂CH₂–).

Fig. S6 UV-vis spectra of PAzo-DMFD film before and after UV light (365 nm, 25 mW·cm⁻², 10 min) and then visible light (550 nm, 10 mW·cm⁻², 10 min) irradiations.

Fig. S7 ¹H-NMR spectra of PAzo-DMFD in $CDCl_3$ before (black) and after (red) 365 nm UV irradiation.

Fig. S8 POM images of a very thin sample of PAzo-DMFD (a) upon UV light irradiation (25 mW·cm⁻², 60 min) at 50 °C, (b) upon heating to 120 °C and then cooling to 50 °C after UV irradiation.