Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI) for

Chiral coordination compounds with exceptional enantioselectivity

Minju Lee and Kang Min Ok*

Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea

Table of Contents

Sections	Titles	pages
Materials and	d Methods	S3-S4
Scheme S1	Synthesis of (<i>R</i> , <i>R</i>)-TBPG and (<i>S</i> , <i>S</i>)-TBPG	S3
Table S1	Crystallographic Data for (R)-Zn and (S)-Zn	S4
Fig. S1	¹ H and ¹³ C NMR spectra for (a) (<i>R</i> , <i>R</i>)-TBPG and (b) (<i>S</i> , <i>S</i>)-TBPG	S5-S6
Fig. S2	Ball-and-stick model revealing coordination modes of Zn ²⁺ cations and TBPG ligands in (R)-Zn	S7
Table S2	Selected bond distances (Å) and selected bond angles (°) for (R)-Zn	S8
Table S3	Hydrogen bonds distances (Å) for (R)-Zn	S9
Table S4	Selected bond distances (Å) and selected bond angles (°) for (S)-Zn	S10
Table S5	Hydrogen bonds distances (Å) for (S)-Zn	S11
Fig. S3	Experimental and calculated powder X-ray diffraction patterns of (R)-Zn and (S)-Zn	S12
Fig. S4	EDX data for (R)-Zn and (S)-Zn	S13
Fig. S5	IR spectra for (R,R)-TBPG, (S,S)-TBPG, (R)-Zn and (S)-Zn	S14
Fig. S6	UV-vis diffuse reflectance spectra for (<i>R</i> , <i>R</i>)-TBPG, (<i>S</i> , <i>S</i>)-TBPG, (<i>R</i>)-Zn and (<i>S</i>)-Zn	S15
Fig. S7	TGA diagrams for (R)-Zn and (S)-Zn	S16
Fig. S8	PXRD patterns measured after heating the title compounds to 800 °C	S16
Fig. S9	(a) Solid-state CD spectra of (<i>R</i> , <i>R</i>)-TBPG, (<i>S</i> , <i>S</i>)-TBPG, (<i>R</i>)-Zn, and (<i>S</i>)-Zn. (b) Absorbance spectra of (<i>R</i> , <i>R</i>)-TBPG and (<i>R</i>)-Zn	S17
Fig. S10	Band structures for (a) (<i>R</i>)-Zn and (b) (<i>S</i>)-Zn	S18
Fig. S11	Total and partial density of states for (a) (R)-Zn and (b) (S)-Zn	S18
Fig. S12	Plots of SHG intensity versus particle size for (R)-Zn and (S)-Zn	S19
Table S6	Dipole moments for polyhedra in (R)-Zn and (S)-Zn	S20
Fig. S13	Net moments and dipole moments of ZnO_6 polyhedra in a unit cell	S20
Fig. S14	PXRD patterns revealing the stability of (<i>R</i>)-Zn (a) in various solvents and (b) at various pH values.	S21
Table S7	Crystallographic Data for (S)-Zn-EtOH	S22
Table S8	Selected bond distances (Å) and selected bond angles (°) for (S)-Zn-EtOH	S23
Table S9	Hydrogen bonds distances (Å) for (S)-Zn-EtOH	S24
Fig. S15	Experimental and calculated powder X-ray diffraction patterns of (S)-Zn-EtOH	S25
Fig. S16	GC-MS results of distilled ethyl ether	S26-S27
Fig. S17	GC-MS result of distilled ethyl ether containing (S)-Zn crystal for 1 day	S28-S29
Fig. S18	GC-MS results of distilled ethyl ether containing (S)-Zn for crystal 3 days	S30-S3
Fig. S19	GC-MS results of distilled ethyl ether containing (S)-Zn for crystal 7 days	S32-S33
Fig. S20	GC-MS results of distilled ethyl ether containing (S)-Zn for crystal 10 days	S34-S35
Fig. S21	GC-MS results of distilled ethyl ether containing (S)-Zn for crystal 14 days	S36-S37
Fig. S22	GC-MS results of distilled ethyl ether containing $Zn(NO_3)_2$ for 1 day	S38-S39
Fig. S23	GC-MS results of distilled ethyl ether containing TBPG ligand for 1 day	S40-S42
Fig. S24	Fluorescence emission spectra of (R)-Zn and (R,R)-TBPG in the solid state	S42
Fig. S25	PXRD patterns of (R)-Zn before and after the fluorescence measurements	S43
Fig. S26	Fluorescence emission spectra of (<i>R</i> , <i>R</i>)-TBPG upon addition of (a) D- and (b) L-Histidine	S44
Fig. S27	Stern-Volmer (SV) plots of (<i>R.R</i>)-TBPG + D-Histidine and (<i>R,R</i>)-TBPG + L-Histidine.	S44
Fig. S28	Fluorescence emission spectra of (R)-Zn upon addition of imidazole	S45
Fig. S29	Stern-Volmer (SV) plots of (R)-Zn + D-Histidine, (R)-Zn + L-Histidine and (R)-Zn + imidazole	S45
Fig. S30	¹ H NMR spectra for (R)-Zn in DMSO-d ₆ , (R)-Zn + Histidine in DMSO-d ₆ /D ₂ O and Histidine in D ₂ O	S46
Fig. S31	Fluorescence emission spectra of (S)-Zn upon addition of (a) D- and (b) L-Histidine	S47
Fig. S32	Stern-Volmer (SV) plots of (S)-Zn + D-Histidine. (R)-Zn + L-Histidine	S47

Experimental Procedures

Section S1. Materials and Methods

Materials. D-2-phenylglycine (99%, TCI), L-2-phenylglycine (98%, TCI), $Zn(NO_3)_2 \cdot 6H_2O$ (99%, Alfa Aesar), NaOH (98%, Alfa Aesar), Terephthaloyl chloride (99%, Sigma Aldrich), Toluene (99.8%, Samchun), HCI (35~37 wt% aq. solution, Samchun), *N*,*N*'-dimethylacetamide (DMA, 99%, Alfa Aesar), ethanol (99.9%, Samchun), and dimethyl sulfoxide-d₆ (99%, Sigma Aldrich) were purchased and used without further purification.

Synthesis of (*R*,*R*)-Terephthaloyl-bis-phenyl glycine [(*R*,*R*)-TBPG] and (*S*,*S*)-Terephthaloyl-bis-phenyl glycine [(*S*,*S*)-TBPG] ligands. The (*R*,*R*)-TBPG ligand was synthesized by a nucleophilic aromatic substitution reaction (Scheme S1). A 1.5 g (10.0 mmol) portion of D-phenyl glycine and 0.6 g (15.0 mmol) of NaOH were placed in a round bottom flask and dissolved in 20 mL of water by stirring in an ice bath to cool the solution to below 10 °C. And then, 1.0 g (5.0 mmol) of terephthaloyl chloride dissolved in 20 mL of toluene solution was added dropwise to the mixture. After the reaction mixture was stirred for 1 h, the aqueous layer was separated from the organic layer and acidified with concentrated HCl aqueous solution. The white product was collected by a vacuum filtration and dried. (*S*,*S*)-TBPG was synthesized by the same method as that of (*R*,*R*)-TBPG using L-phenyl glycine instead of D-phenyl glycine. (*R*,*R*)-TBPG and (*S*,*S*)-TBPG were obtained in 92.0% and 93.5.% yields, respectively.

Scheme S1. Synthesis of (R,R)-TBPG and (S,S)-TBPG

Synthesis of $[Zn_2((R,R)-TBPG)_2(H_2O)_5]\cdot 4H_2O$ [(R)-Zn] and $[Zn_2((S,S)-TBPG)_2(H_2O)_5]\cdot 4H_2O$ [(S)-Zn]. A 0.089 g (0.3 mmol) portion of $Zn(NO_3)_2\cdot 6H_2O$, 0.130 g (0.3 mmol) of (R,R)-TBPG or (S,S)-TBPG, 1 mL of DMA, 1 mL of deionized water, and 1 mL of ethanol were put into a Teflon–lined autoclave. After closing, the autoclave was heated at 80 °C for 72 h and cooled to room temperature at a rate of 6 °C/h. The clear solution was transferred to a vial and colorless plate-shaped crystals begin to grow after about 5 hours through slow evaporation. After 24 h, the complete product was filtered and washed with deionized water. Colorless crystals of (R)-Zn and (S)-Zn were obtained in 43% and 41% yields, respectively.

Instrumentation. Colorless plate shape single crystals with the size of 0.168 mm \times 0.153 mm \times 0.037 mm for (*R*)-Zn and 0.164 mm × 0.157 mm × 0.104 mm for (S)-Zn were used for single crystal X-ray diffraction (SC-XRD) analysis. SC-XRD data were collected using a Bruker D8 QUEST diffractometer with a graphite monochromated Mo K α radiation source (λ = 0.71703 Å) and a PHOTON-II CPAD detector at 100 K at the Advanced Bio-Interface Core Research Facility, Sogang University. The collected data were integrated by the SAINT program¹ and absorption correction was performed using the program SADABS.^{2, 3} The crystal structures were solved and refined with SHELXS-2013 and SHELXL-2013, respectively, implemented in the WinGX-2014.⁴⁻⁶ Since the solvent molecules were severely disordered, the SQUEEZE option in the PLATON^{7,8} software was performed. The detailed crystallographic data for (R)-Zn and (S)-Zn are tabulated in Table S1. The diffraction data for (S)-Zn-EtOH were obtained using a synchrotron radiation (0.63000 Å) on the 2D Supramolecular Crystallography (2D-SMC) beamline equipped with a Rayonix MX225HS CCD area detector at 100k in Pohang Acceleration Laboratory (PAL). The data were integrated and scaled by the program HKL-3000sm.⁹ The crystal structures were solved and refined with SHELXS-2013⁴ and SHELXL-2013,⁵ respectively, implemented in the WinGX-2014.⁶ Since the solvent molecules were severely disordered, the SQUEEZE option in the PLATON^{7, 8} software was performed. The detailed crystallographic data and selected bond lengths and selected bond angles for (S)-Zn-EtOH are tabulated in Tables S7-9.

Table 1 Crystallographic Data for (R)-Zn and (S)-Zn

	(<i>R</i>)-Zn	(S)-Zn
fw	1153.69	1153.69
space group	P2 ₁	P2 ₁
<i>a</i> (Å)	12.0803(13)	12.0909(7)
b (Å)	16.6380(18)	16.6580(10)
<i>c</i> (Å)	14.6323(16)	14.6039(8)
в (°)	114.205(4)	114.138(2
∨ (ų)	2682.45(5)	2684.2(3)
Ζ	2	2
Т (К)	100(2)	100(2)
λ (Å)	0.71073	0.71073
$ ho_{ m calcd}$ (g/cm ³)	1.428	1.410
$R(F_{\rm o})^{\alpha}$	0.0664	0.0461
$R_w(F_o^2)^b$	0.1047	0.0601
Flack x	0.042(6)	0.042(4)
${}^{a}R(F) = \Sigma F_{o} - F_{o} $	$ / \Sigma F_{o} \cdot {}^{b}R_{w}(F_{o}^{2}) = [\Sigma w(F_{o}^{2} -$	$(F_{\rm c}^2)^2 / \Sigma w (F_{\rm o}^2)^2]^{1/2}$.

Powder X-ray diffraction (PXRD) data were collected on a Rigaku MiniFlex 600 using Cu K α (λ = 1.5406 Å) radiation with 40 kV and 15 mA at room temperature. Polycrystalline samples were placed on the sample holders and then scanned in the 2 θ range of 5–70° with a scan speed of 20° min⁻¹ and a scan step width of 0.02°.

Thermogravimetric analysis (TGA) diagrams of the title compounds were obtained by using a SCINCO TGA-N1000 thermal analyzer. The polycrystalline samples were placed on alumina crucibles and heated from 25 °C to 900 °C at a rate of 10 °C min⁻¹ under flowing air.

¹H-NMR and ¹³C-NMR spectral data of the samples were measured with a Varian Inova 400 spectrometer at 400 and 100 MHz, respectively.

Energy Dispersive X-ray Spectrometer (EDX) data were measured with a Horiba Energy EX-250 instrument equipped on a Hitachi S-3400N scanning electron microscope. The EDX data matched well with the calculated atomic ratios obtained from SC-XRD.

Elemental analysis was measured with a Thermo Scientific Flash 2000 on Sn capsules. Elemental analysis for (*R*)-Zn, observed (calculated): C, 49.97% (49.88%); H, 4.72% (4.74%); N, 4.84% (4.91%); (*S*)-Zn, observed (calculated): C, 49.91% (49.88%); H, 4.84 (4.74%); N, 4.82% (4.91%).

Infrared (IR) spectra were measured with a Thermo Scientific Nicolet iS50 FT-IR spectrometer in the range of 400–4000 cm⁻¹ with an attenuated total reflection (ATR) accessory.

UV-vis diffuse-reflectance spectra were measured with a Jasco V–660 spectrophotometer in the range of 200–800 nm. The band gap energy was calculated by the Kubelka-Munk function.¹⁰

Density functional theory (DFT) calculations for title compounds were performed to investigate the electronic structures using the Quantum Espresso package.¹¹ The ultrasoft pseudopotentials type¹² and the Perdew–Burke–Ernzerhof (PBE)¹³ functionals were used for all elements (C, H, N, O, and Zn). The kinetic energy and charge density cutoff were set to 46.649 and 419.846 Ry, respectively. The self-consistent function (SCF) convergence thresholds were set to about 4.0×10^{-6} Ry and the k-points grids of Brillouin zone was set to $2 \times 2 \times 2$.

Solid state circular dichroism (CD) spectra were measured with a JASCO-J-815 spectrophotometer in the range of 220–325 nm after purging with nitrogen gas. The scanning speeds for the measurements were 50 nm min⁻¹.

The fluorescence spectra were measured with a Hitachi F-7000 fluorescence spectrophotometer in the range of 600–800 nm. The scanning speeds for the measurements were 1200 nm min⁻¹. The solid-state fluorescence measurements for (*R*)-Zn were performed at room temperature. To investigate the selective sensing capacity of (*R*)-Zn for Histidine, the ground polycrystalline sample of (*R*)-Zn (10 mg) was dispersed in water (3 mL) by ultrasonication and then subsequently placed in a cuvette with 1 cm width for the measurements. All the titrations were carried out by adding L- and D-Histidine (10 mM) gradually. The fluorescence spectra were recorded at 298 K with the emission wavelength at 680 nm (λ_{ex} = 340 nm). Each measurement was repeated three times to obtain reliable data.

Powder second-harmonic generation (SHG) measurements were performed using a modified Kurtz nonlinear optical system.¹⁴ Because the SHG efficiency depends on the particle size, the ground sample was sieved into specific particle size ranges (< 20, 20–45, 45–63, 63–75, 75–90, and 90–125 μ m). Each sieved particle was put into separate capillary tubes. The tubes were irradiated by a DAWA Q-switched Nd:YAG laser (1064 nm), and the SHG light (532 nm) was received to a Hamamatsu photomultiplier tube and detected by a Tektronix TDS 1032 oscilloscope. A comprehensive SHG measurement was described earlier in the published paper.¹⁵

Fig. S2 Ball-and-stick model revealing coordination modes of Zn^{2+} cations and TBPG ligands in (*R*)-Zn (cyan, Zn; black, C; red, O).

Table S2 Selected bond distances (Å) and selected bond angles (°) for (R)-Zn

Selected bond distances (Å)										
Zn(1)-O(4)	2.031(5)	Zn(2)-O	(11)	2.287(6)	O(16)-C(48)	1.2	252(9)	C(37)-C(40)	1.494(10)	
Zn(1)-O(17)#1	2.074(5)	O(4)-C(1)	1.252(8)	O(17)-C(48)	1.2	259(8)	C(41)-C(42)	1.42(5)	
Zn(1)-O(13)#2	2.086(5)	O(5)-C(1)	1.257(9)	C(1)-C(2)	1.5	531(10)	C(41)-C(48)	1.548(10)	
Zn(1)-O(1)	2.096(6)	O(6)-C(9	9)	1.244(9)	C(2)-C(3)	1.5	503(11)	N(1)-C(9)	1.319(9)	
Zn(1)-O(3)	2.136(5)	O(7)-C(1	6)	1.244(8)	C(9)-C(10)	1.4	496(10)	N(1)-C(2)	1.474(9)	
Zn(1)-O(2)#2	2.163(6)	O(8)-C(2	24)	1.258(9)	C(13)-C(16)	1.5	500(10)	N(2)-C(16)	1.323(9)	
Zn(2)-O(12)	2.027(5)	O(9)-C(2	24)	1.267(9)	C(17)-C(18)	1.5	525(10)	N(2)-C(17)	1.468(9)	
Zn(2)-O(16)#3	2.042(5)	O(12)-C	(25)	1.267(8)	C(17)-C(24)	1.5	522(10)	N(3)-C(33)	1.341(9)	
Zn(2)-O(9)	2.056(5)	O(13)-C	(25)	1.248(9)	C(25)-C(26)	1.5	518(10)	N(3)-C(26)	1.455(9)	
Zn(2)-O(10)	2.072(5)	O(14)-C	(33)	1.232(9)	C(26)-C(27)	1.5	523(10)	N(4)-C(40)	1.341(9)	
Zn(2)-O(2)	2.186(5)	O(15)-C	(40)	1.231(10)	C(33)-C(34)	1.5	502(10)	N(4)-C(41)	1.464(9)	
				Selected bo	nd angles (°)					
O(1)-Zn(1)-O(2)#2		90.3(2)	O(16)#	3-Zn(2)-O(10)	92.	0(2)	C(40)-N(4	4)-C(41)	122.4(7)	
O(1)-Zn(1)-O(3)		85.1(2)	O(16)#	3-Zn(2)-O(11)	174	1.5(2)	O(4)-C(1)	-C(2)	116.1(6)	
O(2)-Zn(2)-O(11)		89.6(2)	O(17)#	1-Zn(1)-O(1)	92.	9(2)	O(5)-C(1)	-C(2)	116.7(6)	
O(3)-Zn(1)-O(2)#2		92.7(2)	O(17)#	1-Zn(1)-O(2)#2	2 89.	3(2)	O(6)-C(9)	-C(10)	119.5(7)	
O(4)-Zn(1)-O(1)		85.7(2)	O(17)#	1-Zn(1)-O(3)	177	7.2(2)	O(7)-C(16	5)-C(13)	119.2(6)	
O(4)-Zn(1)-O(2)#2		173.1(2	O(17)#	1-Zn(1)-O(13)	#2 95.	8(2)	O(8)-C(24	4)-C(17)	117.5(7)	
O(4)-Zn(1)-O(3)		92.7(20	Zn(1)#	4-O(2)-Zn(2)	111	L.4(2)	O(9)-C(24	4)-C(17)	116.7(6)	
O(4)-Zn(1)-O(13)#2		90.29(19)	C(1)-O	(4)-Zn(1)	130).6(5)	O(12)-C(2	25)-C(26)	115.5(6)	
O(4)-Zn(1)-O(17)#1		85.2(2)	C(24)-0	O(9)-Zn(2)	128	3.4(5)	O(13)-C(2	25)-C(26)	117.0(6)	
O(9)-Zn(2)-O(2)		171.6(2)	C(25)-0	O(12)-Zn(2)	131	L.3(5)	O(14)-C(3	33)-C(34)	121.7(6)	
O(9)-Zn(2)-O(10)		92.4(2)	C(25)-0	O(13)-Zn(1)#4	132	2.7(5)	O(15)-C(4	40)-C(37)	121.3(7)	
O(9)-Zn(2)-O(11)		83.1(2)	C(48)-0	O(16)-Zn(2)#5	134	1.5(5)	O(16)-C(4	48)-C(41)	117.1(6)	
O(10)-Zn(2)-O(2)		91.0(2)	C(48)-0	O(17)-Zn(1)#6	132	2.0(5)	N(1)-C(2)	-C(1)	110.2(6)	
O(10)-Zn(2)-O(11)		84.9(2)	O(4)-C	(1)-O(5)	127	7.0(7)	N(1)-C(2)	-C(3)	114.2(6)	
O(12)-Zn(2)-O(2)		87.9(2)	O(8)-C	(24)-O(9)	125	5.8(7)	N(1)-C(9)	-C(10)	117.7(6)	
O(12)-Zn(2)-O(11)		83.9(2)	O(13)-	C(25)-O(12)	127	7.5(7)	N(2)-C(16	5)-C(13)	119.1(6)	
O(12)-Zn(2)-O(9)		87.2(2)	O(16)-	C(48)-O(17)	127	7.2(7)	N(2)-C(17	7)-C(18)	112.7(6)	
O(12)-Zn(2)-O(10)		168.7(2)	O(6)-C	(9)-N(1)	122	2.7(7)	N(2)-C(17	7)-C(24)	109.7(6)	
O(12)-Zn(2)-O(16)#3	3	99.3(2)	O(7)-C	(16)-N(2)	121	L.7(7)	N(3)-C(26	5)-C(25)	110.7(6)	
O(13)#2-Zn(1)-O(1)		170.1(2)	O(14)-	C(33)-N(3)	121	L.4(7)	N(3)-C(26	5)-C(27)	112.6(6)	
O(13)#2-Zn(1)-O(2)#	#2	94.4(2)	O(15)-	C(40)-N(4)	121	L.3(7)	N(3)-C(33	3)-C(34)	116.9(6)	
O(13)#2-Zn(1)-O(3)		86.0(2)	C(9)-N	(1)-C(2)	122	2.2(6)	N(4)-C(40	D)-C(37)	117.4(7)	
O(16)#3-Zn(2)-O(2)		94.9(2)	C(16)-I	N(2)-C(17)	119	9.7(6)	N(4)-C(42	1)-C(42)	110.6(13)	
O(16)#3-Zn(2)-O(9)		92.6(2)	C(33)-I	N(3)-C(26)	120).4(6)	N(4)-C(42	L)-C(48)	107.3(6)	
Symmetr	y operatio	on : #1 x-1,y+1	.,z-1 #2	x,y+1,z #3 x-	-1,y,z-1 #4 x	(,y-1,z	#5 x+1,y,z+	1 #6 x+1,y-1,	z+1	

Table S3 Hydrogen bonds distances (Å) for (R)-Zn

D-HA	d(DA)	D-HA	d(DA)
N(1)-H(1)O(18)#1	2.968(8)	O(10)-H(55)O(7)#9	2.732(7)
N(2)-H(2A)O(19)	3.477(9)	O(11)-H(56)O(19)	2.812(9)
O(1)-H(48)O(14)#7	2.734(7)	O(18)-H(58)O(8)#8	2.868(8)
O(2)-H(50)O(20)	2.600(8)	O(18)-H(59)O(17)	2.825(7)
O(2)-H(51)O(21)	2.634(8)	O(19)-H(60)O(12)	2.762(8)
O(3)-H(52)O(4)	3.016(7)	O(19)-H(61)O(5) #8	2.840 (8)
O(3)-H(52)O(5)	2.738(7)	O(20)-H(62)O(6)#8	2.728(8)
O(3)-H(53)O(6)#7	2.796(8)	O(20)-H(63)O(11)	2.756(9)
O(10)-H(54)O(8)	2.638(8)	O(21)-H(64)O(7)#9	2.804(9)
Symmetry operation : #1 x-1,y+	1,z-1 #7 -x+1,y	+1/2,-z+1 #8 -x+1,y-1/2,-z+1 #9	-x,y-1/2,-z

Selected bond distances (Å)											
Zn(1)-O(4)	2.042(3)	Zn(2)-O(1	1) 2	2.284(4)	O(16)-C(4	48)	1.257(6)	C(37)-C(40)	1.50	1(7)
Zn(1)-O(17)#1	2.071(3)	O(4)-C(1)	:	1.252(6)	O(17)-C(4	48)	1.255(6)	C(41)-C(42)	1.47	(4)
Zn(1)-O(13)#2	2.079(3)	O(5)-C(1)		1.248(6)	C(1)-C(2)		1.533(6)	C(41)-C(48)	1.54	0(7)
Zn(1)-O(1)	2.102(4)	2(4) O(6)-C(9)		1.252(5)	C(2)-C(3) 1		1.520(7)	N(1)-C(9)	1.31	8(6)
Zn(1)-O(3)	2.144(3)	O(7)-C(16)) :	1.242(6)	C(9)-C(10) 1.		1.503(6)	N(1)-C(2)	1.47	5(6)
Zn(1)-O(2)	2.160(3)	O(8)-C(24)) :	1.250(5)	C(13)-C(16) 1		1.500(6)	N(2)-C(16)	1.33	6(6)
Zn(2)-O(12)	2.023(3)	O(9)-C(24)) :	1.270(5)	C(17)-C(2	L8)	1.520(7)	N(2)-C(17)	1.46	5(6)
Zn(2)-O(16)#3	2.039(4)	O(12)-C(2	5) 2	1.259(5)	C(17)-C(2	24)	1.527(7)	N(3)-C(33)	1.343	3(6)
Zn(2)-O(9)	2.050(3)	O(13)-C(2	5) 2	1.245(6)	C(25)-C(2	26)	1.539(6)	N(3)-C(26)	1.46	1(5)
Zn(2)-O(10)	2.067(3)	O(14)-C(3	3) :	1.222(6)	C(26)-C(2	27)	1.511(7)	N(4)-C(40)	1.34	2(6)
Zn(2)-O(2)#4	2.188(3)	O(15)-C(4	0) :	1.225(6)	C(33)-C(3	34)	1.502(6)	N(4)-C(41)	1.46	1(6)
			Se	lected bond a	angles (°)						
O(1)-Zn(1)-O(2)	90.23(2	4)	O(16)#3-2	Zn(2)-O(10)		91.90(14	.)	C(40)-N(4)-C(41)	121.3(4)
O(1)-Zn(1)-O(3)	85.13(2	4)	O(16)#3-2	Zn(2)-O(11)		174.54(1	.4)	O(4)-C(1)-C(2)	115.6(4)
O(2)#4-Zn(2)-O(11)	89.85(2	.3)	O(17)#1-2	Zn(1)-O(1)		93.01(14	.)	O(5)-C(1)-C(2)	117.0(4)
O(3)-Zn(1)-O(2)	92.87(2	.3)	O(17)#1-2	Zn(1)-O(2)		88.89(13	5)	O(6)-C(9)-C(10)	119.0(4)
O(4)-Zn(1)-O(1)	85.69(2	4)	O(17)#1-2	Zn(1)-O(3)		177.44(1	.3)	O(7)-C(1	6)-C(13)	120.1(4)
O(4)-Zn(1)-O(2)	172.90	(13)	O(17)#1-2	Zn(1)-O(13)#2	2	95.56(14	.)	O(8)-C(2	4)-C(17)	117.7(4)
O(4)-Zn(1)-O(3)	92.57(2	.3) 2	Zn(1)-O(2)-Zn(2)#2			111.44(15)		O(9)-C(2	4)-C(17)	116.1(4)
O(4)-Zn(1)-O(13)#2	90.43(2	2)	C(1)-O(4)-Zn(1)		130.2(3)			O(12)-C(25)-C(26)	115.0(4)
O(4)-Zn(1)-O(17)#1	85.53(2	.3)	C(24)-O(9)-Zn(2)		128.4(3)			O(13)-C(25)-C(26)	117.5(4)
O(9)-Zn(2)-O(2)#4	172.02	(13)	C(25)-O(1	12)-Zn(2)	131.7(3)			O(14)-C(33)-C(34)	121.7(4)
O(9)-Zn(2)-O(10)	92.10(2	.3)	C(25)-O(1	13)-Zn(1)#4		132.7(3)		O(15)-C(40)-C(37)	121.2(4)
O(9)-Zn(2)-O(11)	83.18(2	.3)	C(48)-O(1	16)-Zn(2)#5		134.5(3)		O(16)-C(48)-C(41)	117.1(4)
O(10)-Zn(2)-O(2)#4	91.17(2	.3)	C(48)-O(1	17)-Zn(1)#6		132.5(3)		N(1)-C(2)-C(3)	113.6(4)
O(10)-Zn(2)-O(11)	85.03(2	4)	O(5)-C(1)	-0(4)		127.4(4)		N(1)-C(2)-C(1)	110.6(4)
O(12)-Zn(2)-O(2)#4	87.90(2	.3)	O(8)-C(24	4)-O(9)		126.2(4)		N(1)-C(9)-C(10)	117.6(4)
O(12)-Zn(2)-O(9)	87.52(2	.3)	O(13)-C(2	25)-O(12)		127.4(4)		N(2)-C(1	6)-C(13)	119.3(4)
O(12)-Zn(2)-O(10)	169.13	(14)	O(17)-C(4	48)-O(16)		126.7(5)		N(2)-C(1	7)-C(18)	113.1(4)
O(12)-Zn(2)-O(11)	84.14(2	.3)	O(6)-C(9)	-N(1)		123.4(4)		N(2)-C(1	7)-C(24)	110.1(4
O(12)-Zn(2)-O(16)#3	98.97(2	4)	O(7)-C(16	5)-N(2)		120.6(4)		N(3)-C(2	6)-C(27)	112.8(4)
O(13)#2-Zn(1)-O(1)	170.29	(14)	O(14)-C(3	33)-N(3)		121.6(4)		N(3)-C(2	6)-C(25)	109.6(4)
O(13)#2-Zn(1)-O(2)	94.49(2	.3)	O(15)-C(4	40)-N(4)		122.3(4)		N(3)-C(3	3)-C(34)	116.7(4)
O(13)#2-Zn(1)-O(3)	86.16(2	.4)	C(9)-N(1)	-C(2)		121.1(4)		N(4)-C(4	0)-C(37)	116.5(5)
O(16)#3-Zn(2)-O(2)#	4 94.73(2	4)	C(16)-N(2	2)-C(17)		120.0(4)		N(4)-C(4	1)-C(42)	111.8(1)
O(16)#3-Zn(2)-O(9)	92.44(2	4)	C(33)-N(3)-C(26)			119.7(4)		N(4)-C(4	1)-C(48)	107.5(4)
Symmetry operation	Symmetry operation : #1 x-1,y-1,z-1 #2 x,y-1,z #3 x-1,y,z-1 #4 x,y+1,z #5 x+1,y,z+1 #6 x+1,y+1,z+1										

Table S4 Selected bond distances (Å) and selected bond angles (°) for (S)-Zn

Table S5 Hydrogen bonds distances (Å) for (S)-Zn

D-HA	d(DA)	D-HA	d(DA)				
N(1)-H(1)O(18)#1	2.967(5)	O(10)-H(55)O(8)	2.626(5)				
N(2)-H(2A)O(19)	3.468(6)	O(11)-H(57)O(19)	2.814(5)				
O(1)-H(48)O(14)#10	2.743(5)	O(18)-H(58)O(17)	2.833(5)				
O(2)-H(50)O(20)	2.640(5)	O(18)-H(59)O(8)#8	2.862(5)				
O(2)-H(51)O(21)	2.613(5)	O(19)-H(60)O(5)#8	2.843(5)				
O(3)-H(52)O(6)#10	2.799(5)	O(19)-H(61)O(12)	2.773(5)				
O(3)-H(53)O(4)	3.027(5)	O(20)-H(63)O(7)#9	2.808(5)				
O(3)-H(53)O(5)	2.744(5)	O(21)-H(64)O(6)#10	2.716(5)				
O(10)-H(54)O(7)#7	2.743(5)	O(21)-H(65)O(11)#2	2.749(6)				
Symmetry operation : #1 x-	1,y-1,z-1 #2 x,y-1,	.z #7 -x,y+1/2,-z #8 -x+1,y	/+1/2,-z+1 #9 -x,y-				
1/2,-z #10 -x+1,y-1/2,-z+1							

Fig. S3 Experimental and calculated powder X-ray diffraction patterns of (R)-Zn and (S)-Zn

Fig. S4 SEM-EDX data for (R)-Zn and (S)-Zn

Fig. S7 TGA diagrams for (R)-Zn and (S)-Zn

Fig. S8 PXRD patterns measured after heating the samples to 800 °C

Fig. S9 (a) Solid-state CD spectra of (*R*,*R*)-TBPG, (*S*,*S*)-TBPG, (*R*)-Zn, and (*S*)-Zn. (b) Absorbance spectra of (*R*,*R*)-TBPG and (*R*)-Zn.

Fig. S10 Band structures for (a) (*R*)-Zn and (b) (*S*)-Zn. Arrows represent the optical transition from the valence band maximum to the conduction band minimum.

Fig. S11 Total and partial density of states for (a) (R)-Zn and (b) (S)-Zn

Fig. S12 Plots of SHG intensity versus particle size for (R)-Zn and (S)-Zn

Table S6 Dipole moments for polyhedra in (R)-Zn and (S)-Zn

Compound	Unit	Magnitude	Dipole	e moment (D	D)
compound	ent mugnitude		x	у	Ζ
	ZnO ₆ (1)	3.71D	-1.01	3.57	-0.06
	ZnO ₆ (2)	2.93 D	-0.05	-2.63	-1.28
(<i>R</i>)-Zn	ZnO ₆ (3)	3.71 D	1.01	3.57	0.06
	ZnO ₆ (4)	2.93 D	0.05	-2.63	1.28
	Net	1.87D	0	1.87	0
	ZnO ₆ (1)	2.85 D	-0.16	2.59	1.17
	ZnO ₆ (2)	3.62 D	0.82	-3.53	0.02
(<i>S</i>)-Zn	ZnO ₆ (3)	2.85 D	0.16	2.59	-1.17
	ZnO ₆ (4)	3.62 D	-0.82	-3.53	-0.02
	Net	1.87 D	0	-1.87	0

Fig. S13 Net moments and dipole moments of ZnO_6 polyhedra in a unit cell

Fig. S14 PXRD patterns revealing the stability of (*R*)-Zn (a) in various solvents and (b) at various pH values.

Table S7 Crystallographic Data for (S)-Zn-EtOH

	(S)-Zn-EtOH
fw	1178.72
space group	P2 ₁
<i>a</i> (Å)	12.177(2)
b (Å)	16.612(3)
<i>c</i> (Å)	14.691(3)
в (°)	114.36(3)
<i>V</i> (ų)	2707.2(11)
Ζ	2
<i>Т</i> (К)	100(2)
λ (Å)	0.630
$ ho_{ m calcd}$ (g/cm ³)	1.446
$R(F_{\rm o})^a$	0.0532
$R_w(F_o^2)^b$	0.0911
Flack <i>x</i>	0.023(9)

 ${}^{a}R(F) = \Sigma ||F_{\circ}| - |F_{c}|| / \Sigma |F_{\circ}| \cdot {}^{b}R_{w}(F_{\circ}{}^{2}) = [\Sigma w(F_{\circ}{}^{2} - F_{c}{}^{2})^{2} / \Sigma w(F_{\circ}{}^{2})^{2}]^{1/2}.$

 Table S8 Selected bond distances (Å) and selected bond angles (°) for (S)-Zn-EtOH

Selected bond distances (Å)							
Zn(1)-O(4)	2.030(4)	O(4)-C(1)	1.254(6)	O(20)-C(49)	1.500(18)	C(41)-C(48)	1.525(8)
Zn(1)-O(17)#1	2.057(4)	O(5)-C(1)	1.249(7)	C(1)-C(2)	1.547(9)	C(49)-C(50)	1.446(11)
Zn(1)-O(13)#2	2.069(4)	O(6)-C(9)	1.232(6)	C(2)-C(3)	1.514(9)	N(1)-C(9)	1.330(7)
Zn(1)-O(1)	2.132(5)	O(7)-C(16)	1.231(7)	C(9)-C(10)	1.516(8)	N(1)-C(2)	1.466(7)
Zn(1)-O(3)	2.135(4)	O(8)-C(24)	1.258(7)	C(13)-C(16)	1.495(8)	N(2)-C(16)	1.337(7)
Zn(1)-O(2)	2.157(5)	O(9)-C(24)	1.247(6)	C(17)-C(18)	1.533(9)	N(2)-C(17)	1.472(7)
Zn(2)-O(12)#3	2.029(4)	O(12)-C(48)	1.270(7)	C(17)-C(24)	1.529(8)	N(3)-C(33)	1.345(7)
Zn(2)-O(16)	2.052(4)	O(13)-C(48)	1.244(7)	C(25)-C(26)	1.578(8)	N(3)-C(26)	1.458(7)
Zn(2)-O(9)	2.060(4)	O(14)-C(33)	1.235(8)	C(26)-C(27)	1.44(4)	N(4)-C(40)	1.324(7)
Zn(2)-O(10)	2.073(4)	O(15)-C(40)	1.233(7)	C(33)-C(34)	1.498(8)	N(4)-C(41)	1.458(7)
Zn(2)-O(2)#4	2.181(4)	O(16)-C(25)	1.261(7)	C(37)-C(40)	1.501(8)		
Zn(2)-O(11)	2.231(5)	O(17)-C(25)	1.256(7)	C(41)-C(42)	1.532(9)		
			Selected b	oond angles (°)			
O(1)-Zn(1)-O(2)		89.10(19)	O(16)-Zn(2)-O(1	.1)	173.87(17)	O(5)-C(1)-C(2)	117.4(5)
O(1)-Zn(1)-O(3)		84.37(19)	O(17)#1-Zn(1)-C	D(1)	91.75(18)	O(6)-C(9)-C(10)	120.3(5)
O(2)#4-Zn(2)-O(11)		89.76(18)	O(17)#1-Zn(1)-C	D(2)	88.95(16)	O(7)-C(16)-C(13)	120.9(5)
O(3)-Zn(1)-O(2)		92.63(17)	O(17)#1-Zn(1)-C	D(3)	175.79(17)	O(8)-C(24)-C(17)	116.6(5)
O(4)-Zn(1)-O(1)		85.10(19)	O(17)#1-Zn(1)-C	D(13)#2	96.90(17)	O(9)-C(24)-C(17)	116.2(5)
O(4)-Zn(1)-O(2)		172.29(17)	Zn(1)-O(2)-Zn(2)#2	111.6(2)	O(12)-C(48)-C(41)	115.4(5)
O(4)-Zn(1)-O(3)		91.97(17)	C(1)-O(4)-Zn(1)		130.2(4)	O(13)-C(48)-C(41)	118.2(5)
O(4)-Zn(1)-O(13)#2		91.74(15)	C(24)-O(9)-Zn(2)	128.1(4)	O(14)-C(33)-C(34)	121.4(5)
O(4)-Zn(1)-O(17)#1		86.05(16)	C(25)-O(16)-Zn(2)	134.5(4)	O(16)-C(25)-C(26)	116.6(5)
O(9)-Zn(2)-O(2)#4		172.51(16)	C(25)-O(17)-Zn(1)#4	133.0(4)	O(17)-C(25)-C(26)	117.5(6)
O(9)-Zn(2)-O(10)		92.12(17)	C(48)-O(12)-Zn(2)#5	132.8(4)	O(20)-C(49)-C(50)	111.2(11)
O(9)-Zn(2)-O(11)		84.03(18)	C(48)-O(13)-Zn(1)#6	133.2(4)	N(1)-C(2)-C(3)	113.6(5)
O(10)-Zn(2)-O(2)#4		91.47(17)	O(5)-C(1)-O(4)		130.2(4)	N(1)-C(2)-C(1)	109.9(5)
O(10)-Zn(2)-O(11)		84.81(18)	O(8)-C(24)-O(9)		127.2(6)	N(1)-C(9)-C(10)	116.9(5)
O(12)#3-Zn(2)-O(2)#	# 4	87.76(16)	O(13)-C(48)-O(1	.2)	126.5(5)	N(2)-C(16)-C(13)	117.9(5)
O(12)#3-Zn(2)-O(9)		87.65(16)	O(17)-C(25)-O(1	.6)	125.9(6)	N(2)-C(17)-C(18)	112.8(5)
O(12)#3-Zn(2)-O(10)	170.86(18)	O(6)-C(9)-N(1)		122.7(5)	N(2)-C(17)-C(24)	109.6(5)
O(12)#3-Zn(2)-O(11)	86.08(17)	O(7)-C(16)-N(2)		121.2(5)	N(3)-C(26)-C(27)	111.4(17)
O(12)-Zn(2)-O(16)#3	3	98.36(17)	O(14)-C(33)-N(3	5)	121.5(5)	N(3)-C(26)-C(25)	108.3(5)
O(13)#2-Zn(1)-O(1)		170.58(18)	O(15)-C(40)-N(4	-)	121.6(5)	N(3)-C(33)-C(34)	117.2(6)
O(13)#2-Zn(1)-O(2)		94.69(17)	C(9)-N(1)-C(2)		121.3(5)	N(4)-C(40)-C(37)	117.6(5)
O(13)#2-Zn(1)-O(3)		86.87(17)	C(16)-N(2)-C(17)	120.0(5)	N(4)-C(41)-C(42)	112.6(5)
O(16)-Zn(2)-O(2)#4		94.61(17)	C(33)-N(3)-C(26)	123.1(5)	N(4)-C(41)-C(48)	109.9(5)
O(16)-Zn(2)-O(9)		91.91(17)	C(40)-N(4)-C(41)	121.2(5)		
O(16)-Zn(2)-O(10)		90.78(17)	O(4)-C(1)-C(2)		115.8(5)		
Symmetry operation	n : #1 x-1,	/-1,z-1 #2 x,y-1,	z #3 x-1,y,z-1	#4 x,y+1,z #5	x+1,y,z+1 #6 x	+1,y+1,z+1	

Table S9 Hydrogen bonds distances (Å) for (S)-Zn-EtOH

D-HA	d(DA)	D-HA	d(DA)			
N(1)-H(1)O(18)#1	2.974(6)	O(18)-H(1D)O(8)#8	2.857(6)			
O(1)-H(10)O(15)#7	2.717(6)	O(18)-H(1E)O(17)	2.835(6)			
O(1)-H(13)O(3)	2.865(6)	O(18)-H(1E)O(4)#4	3.000(6)			
O(2)-H(9)O(21)	2.566(7)	O(19)-H(1H)O(12)	2.751(6)			
O(3)-H(16)O(5)	2.714(4)	O(19)-H(1F)O(5)#8	2.839(6)			
O(3)-H(1G)O(6)#9	2.809(6)	O(21)-H(1B)O(6)#9	2.744(7)			
O(10)-H(1L)O(7)#8	2.732(6)	C(50)-H(50A)O(14)#7	2.779(8)			
O(10)-H(1M)O(8)	2.635(6)	O(50)-H(50B)O(11)	2.755(8)			
O(11)-H(1N)O(19)#3	2.825(8)					
Symmetry operation : #1 x-1,y-1,z-1 #3 x,y,z-1 #4 x,y-1,z #7 -x,y+1/2,-z						
#7 -x+1,y+1/2,-z+1 #8 -x+1,y+	1/2,-z+1 #9 -x,	y-1/2,-z				

Fig. S15 Experimental and calculated powder X-ray diffraction patterns of (S)-Zn-EtOH

Area Percent Report

Data File	:	$C: \setminus M$	ISDCHE	EM\1\I	DATA\		7	Vial:	1		
Acq On	:	14 Dec 2021 11:03							Opera	ator:	LHK
Sample	:	LMJ	D Eth	ner					Inst	:	Instrumen
Misc	:	60/1	.0/10/	240					Mult	iplr:	1.00
								Sa	ample Amo	ount:	0.00
MS Integration Params: autoint1.e											
<pre>Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title :</pre>									ator)		
Signal	:	TIC									
peak R.T. # min	f	irst scan	max scan	last scan	РК ТҮ	peak height		corr. area	corr. % max.	% 0: tot:	f al
1 1.080		105	122	330	BB 6	11191739	80	4600884	100.00%	100.	8000

Sum of corrected areas: 804600884

Fig. S17 GC-MS result of distilled diethyl ether containing (S)-Zn crystal for 1 day

MS Integration Params: autointl.e

Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator)
Title :

Signal : TIC

peak	R.T.	first	max	last	PK	peak	corr.	corr.	% of
#	min	scan	scan	scan	TY	height	area	% max.	total
1	1.080	105	122	196	BV 5	11189299	695965201	100.00%	90.552%
2	1.605	196	202	305	VB	1211433	72614507	10.43%	9.448%

Sum of corrected areas: 768579707

Fig. S18 GC-MS result of distilled diethyl ether containing (S)-Zn crystal for 3 days

Area Percent Report

Data File : C:\MSDCHEM\1\DATA\LMJ014.D Acq On : 14 Dec 2021 10:44 Sample : LMJ D_Ether 3d Misc : 60/10/10/240 MS Integration Params: autoint1.e									Oper Inst Mult Sample Am	Vial: ator: : iplr: ount:	1 LHK Instru 1.00 0.00	ımen
	Metho Title	d	: C:` :	MSDCH	EM\1\I	METHO]	OS\DEFAUI	JT.M (Chem	station I	ntegra	ator)	
	Signa	.1	: TI(2	1	DIZ				8	F	
F	еак #	R.T. min	scar	n scan	scan	TY	height	area	% max.	tota	L al 	
	1 1 2 1	.073	94 195	121 5 202	195 318	BV 5 VB	11343887 2413252	7 73663766 116019525	7 100.00% 15.75%	86.3 13.60	3938 078	

Sum of corrected areas: 852657192

Fig. S19 GC-MS result of distilled diethyl ether containing (S)-Zn crystal for 7 days

Area Percent Report

Data File Acq On Sample Misc	: C:\N : 17 I : LMJ : 60/1	Si	Vial: 1 Operator: LHK Inst : Instrume Multiplr: 1.00 Sample Amount: 0.00										
MS Integration Params: autoint1.e													
Method Title Signal	: C:\N : : TIC	ISDCHI	EM\1\M	METHOI	DS\DEFAUL	F.M (Chems	tation In	ntegra	ator)				
5								0	-				
peak R.T. # min	first scan	max scan	last scan	PK TY	peak height	corr. area	<pre>corr. % max.</pre>	* 01 tota	c al				
1 1.073	95	121	196	BV 5	11372559	705957412	100.00%	89.5	595%				
2 1.605	196	202	309	VВ	1208131	81984419	11.61%	10.40	158				

Sum of corrected areas: 787941831

Fig. S20 GC-MS result of distilled diethyl ether containing (S)-Zn crystal for 10 days

Area Percent Report

Data File Acq On	: C:\I : 20 I	MSDCHI Dec 20		Vial: 1 Operator: LHK						
Sample	: LMJ	D_etl		Inst	:	Instru	umen			
Misc	: 60/:	10/10,	/240				Multi	plr:	1.00	
						S	Sample Amount: 0.00			
MS Integra	ation 1	Params	s: aut	coint	1.e					
Method Title	: C:\I :	MSDCHI	EM\1\N	tation Ir	ntegra	tor)				
Signal	: TIC									
peak R.T. # min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of tota	1	
1 1.073 2 1.599	95 196	121 201	196 310	BV 4 VB	11295725 1558770	702351997 83683504	100.00% 11.91%	89.3 10.64	54% 6%	

Sum of corrected areas: 786035501

Fig. S21 GC-MS result of distilled diethyl ether containing (S)-Zn crystal for 14 days

Area Percent Report

Data Acq Samp Misc	a File On ple C Integra	: C:\N : 24 I : LMJ : 60/1 ation H	ISDCHE Dec 20 D_eth 10/10/ Params	Sa	N Opera Inst Multi ample Amo	Vial: ator: : iplr: punt:	1 LHK Instru 1.00 0.00	ımen			
Metl Tit: Sign	nod le nal	: C:\N : : TIC	ISDCHE	EM\1\N	1ETHOI	DS\DEFAULT	F.M (Chemst	cation Ir	ntegra	ator)	
peak # 1 2	R.T. min 1.073 1.605	first scan 93 196	max scan 121 202	last scan 196 305	PK TY BV 5 VB	peak height 11331447 2046168	corr. area 682183556 90196487	corr. % max. 100.00% 13.22%	% 0: tota 88.: 11.6	E al 322% 78%	

Sum of corrected areas: 772380043

Fig. S22 GC-MS result of distilled diethyl ether containing $Zn(NO_3)_2$ for 1 day

Area Percent Report

Data	File	: C:\	MSDCH	EM\1\I		7	Vial:	1				
Acq	Acq On : 27 Dec 2021 13:24							Opera	ator:	LHK		
Samp	le	: LMJ	D et]	ner Zı	n (NO3)) 2		Inst : Instr				
Misc		: 60/	10/10,	/240				Mult	iplr:	1.00		
							Sa	ample Amo	ount:	0.00		
MS Ir	ntegra	tion	Param	s: aut	coint	1.e						
Metho Title	od e	: C:\ :	MSDCHI	EM\1\N	1ETHOI	OS\DEFAUL:	T.M (Chems	(Chemstation Integrator)				
Signa	al	: TIC										
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of tota	E al		
1 1	L.080	97	122	329	BB 5	11328763	749202585	100.00%	100.0	900%		

Sum of corrected areas: 749202585

Fig. S23 GC-MS result of distilled diethyl ether containing TBPG ligand for 1 day

Area Percent Report

Dat Acc San Mis	a File I On Iple SC	: C:\I : 28 I : LMJ : 60/3	MSDCHI Dec 20 D_et1 10/10,	q	Vial: 1 Operator: LHK Inst : Instrume Multiplr: 1.00 Sample Amount: 0.00						
MS	Integra	ation 1	Parama	s: aut	toint	1.e	5	ampre Ame	unc.	0.00	
Met Tit Sig	hod le gnal	: C:\N : : TIC	MSDCHI	EM\1\M	METHOI	DS\DEFAUL	I.M (Chems	tation In	tegra	ator)	
peak #	R.T. min	first scan	max scan	last scan	РК ТҮ	peak height	corr. area	corr. % max.	% of tota	E al 	
1 2	1.073 2.302	104 301	121 308	301 329	BV 4 VB	11157777 1181425	797326498 25585806	100.00% 3.21%	96.8 3.1(391%)9%	

Sum of corrected areas: 822912304

S41

Fig. S24 Fluorescence emission spectra of (R)-Zn and (R,R)-TBPG in the solid state

Fig. S25 PXRD patterns of (R)-Zn before and after the fluorescence measurements

Fig. S27 Stern-Volmer (SV) plots of (R,R)-TBPG + D-histidine and (R,R)-TBPG + L-histidine

Fig. S28 Fluorescence emission spectra of (R)-Zn upon addition of imidazole

Fig. S29 Stern-Volmer (SV) plots of (*R*)-Zn + D-histidine, (*R*)-Zn + L-histidine and (*R*)-Zn + imidazole. The K_{SV} constant for (*R*)-Zn + imidazole is 7.6 × 10² M⁻¹.

Fig. S30 ¹H NMR spectra for (*R*)-Zn in DMSO-d₆, (*R*)-Zn + Histidine in DMSO-d₆/D₂O and Histidine in D₂O

Fig. S31 Fluorescence emission spectra of (S)-Zn upon addition of (a) D- and (b) L-histidine

Fig. S32 Stern-Volmer (SV) plots of (S)-Zn + D-Histidine and (S)-Zn + *L*-Histidine. The K_{SV} constants for (S)-Zn + D-histidine and (S)-Zn + L-histidine are 1.5×10^3 M⁻¹ and 3.5×10^2 M⁻¹, respectively, and enantioselectivity factor α is calculated to be 4.22.

References

- 1. SADABS, Siemens Industrial Automation Inc, *Madison, WI*, 1996.
- 2. Siemens, Area-Detector Control and Integration Software, *Siemens Analytical X-ray Instruments Inc., Madison, WI, USA*, 1996.
- 3. R. H. Blessing, An empirical correction for absorption anisotropy, *Acta Crystallogr., A, Found. Crystallogr.,* 1995, **51**, 33-38.
- 4. G. Sheldrick, SHELXS-2013/1, program for the solution of crystal structures, *Germany: University of Göttingen*, 2013.
- 5. G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. C Struct. Chem.*, 2015, **71**, 3-8.
- 6. L. J. Farrugia, WinGX and ORTEP for Windows: an update, *J. Appl. Crystallogr.*, 2012, **45**, 849-854.
- 7. A. L. Spek, PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors, *Acta Crystallogr. C Struct. Chem.*, 2015, **71**, 9-18.
- 8. A. Spek, Single-crystal structure validation with the program PLATON, *J. Appl. Crystallogr.*, 2003, **36**, 7-13.
- 9. Z. Otwinowski and W. Minor, in *Methods Enzymol.*, Elsevier, 1997, vol. 276, pp. 307-326.
- P. Kubelka, Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint), Z. Tech. Phys., 1931, 12, 593-601.
- 11. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni and I. Dabo, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, *J. Phys.: Condens. Matter*, 2009, **21**, 395502.
- 12. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, *Phys. Rev. B*, 1990, **41**, 7892.
- 13. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 14. S. Kurtz and T. Perry, A powder technique for the evaluation of nonlinear optical materials, *J. Appl. Phys.*, 1968, **39**, 3798-3813.
- 15. K. M. Ok, E. O. Chi and P. S. Halasyamani, Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, *Chem. Soc. Rev.*, 2006, **35**, 710-717.