Supporting Information

0D-3D Mixed-Dimensionality Perovskite Cs₄Pb(BrCl)₆-CsPbBr_{2-x}Cl_{1+x} Films for Stable and Sensitive Self-Powered, High-Temperature Photodetectors

Yanshuang Ba,^a Weidong Zhu,^{a,b,*} Sunjie Huangfu,^a He Xi,^a Tianjiao Han,^a Tianran Wang,^a Dazheng Chen,^{a,b} Jincheng Zhang,^{a,b} Chunfu Zhang,^{a,b,*} Yue Hao^a

^aState Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi'an, 710071, China.

^bGuangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China.

**E-mail:* wdzhu@xidian.edu.cn, cfzhang@xidian.edu.cn.

Fig. S1. SEM images of (a) PbBr₂ films and (b) PbBr₂ films prepared with 0.10 M CsCl additive.

Fig. S2. Storage stability test results in ambient air for the self-powered PD based on $CsPb(BrCl)_{6}$ -CsPbBr_{2-x}Cl_{1+x} film recorded under 300 °C.

PD configuration	Self- powered	R (A W ⁻¹)	D* (Jones)	Rising/falling time	Ref.
FTO/TiO ₂ /Cs ₄ Pb(BrCl) ₆ - CsPbBr _{2-x} Cl _{1+x} /Carbon	Yes	0.18	1.65×10 ¹³	1.23 μs	This work
Au/CsPbBr ₃ /Au	No	133@5V	0.86×10^{12} @5V	20.9/24.6 ms	[1]
CsPbBr ₃ /PDVT-10/Cr/Cu	No	1.64×10 ⁴ @3V	3.17×10 ¹² @3V	-	[2]
ITO/CsPbBr ₃ /ITO	No	6×104@3V	-	0.5/1.6 ms	[3]
Carbon/(HDA)CsPb ₂ Br ₇ / Carbon	No	0.21×10 ⁻³ @10V	1.5×10 ⁹	200/300 µs	[4]
ITO/PTAA/FAPbI ₃ /C ₆₀ / BCP/Cu	Yes	0.45	1.18×10 ¹²	0.9/1.3 μs	[5]
ITO/PTAA/PMMA/ Cs _x DMA _{1-x} PbI ₃ /PCBM/Bphen/Cu	Yes	0.38	1×10 ¹³	558 ns	[6]
Au/(FAPbI ₃) _{0.79} (MAPbBr 3) _{0.13} (CsPbI ₃) _{0.08} /Au	No	40@3 V	1.9×10 ¹³ @3 V	-	[7]
FTO/TiO ₂ /Al ₂ O ₃ /PCBM/ MAPbI ₃ /Spiro- OMeTAD/Au/Ag	No	0.4@-1 V	6×10 ¹² @-1 V	1.2/3.2µs	[8]
ITO/MAPbI ₃ /Au	No	-	1.76×10 ¹¹ @2V	27.2/26.2 ms	[9]
Ag/ITO/Cs2SnI6/ITO/Ag	No	130@-5V	1×10 ¹³ @-5V	1/1 s	[10]
Au/Cs2SnCl6-xBrx/Au	No	-	2.71×10 ¹⁰ @-20V	9.52/4.34 ms	[11]
Ag/Cs3Bi2I9/Au	No	-	3.90×10 ¹¹ @3V	1.5/42.2 μs	[12]

Table S1. Summary of performance parameters of the typical PDs based on CsPbX₃ materials.

References

- 1 Y. Li, Z. Shi, L. Lei, F. Zhang, Z. Ma, D. Wu, T. Xu, Y. Tian, Y. Zhang and G. Du, *Chem. Materi.*, 2018, **30**, 6744-6755.
- 2 K. Chen, X. Zhang, P. A. Chen, J. Guo, M. He, Y. Chen, X. Qiu, Y. Liu, H. Chen and Z. Zeng, *Adv. Sci.*, 2022, 9, 2105856.
- 3 B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng and K. Han, *Adv. Mater.*, 2017, **29**, 1703758.
- 4 T. Yang, Y. Li, S. Han, Z. Xu, Y. Liu, X. Zhang, X. Liu, B. Teng, J. Luo and Z. Sun, *Small*, 2020, 16, 1907020.
- 5 X. Feng, M. Tan, M. Li, H. Wei and B. Yang, *Nano Lett.*, 2021, 21, 1500-1507.
- 6 L. Li, F. Zhang, S. Ye, X. Peng, Z. Sun, J. Lian, L. Liu, J. Qu and J. Song, Nano Energy, 2020, 71, 104611.
- 7 W. Kong, C. Zhao, T. Huang, X. Li, J. Xing, Z. Yu, P. Yang, W. Li and W. Yu, ACS Appl. Mater. Interfaces, 2022, 14, 28154-28162.
- 8 B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos and E. H. Sargent, B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos and E. H. Sargent, ACS Photonics, 2015, 2, 1117-1123.
- 9 S. Lim, M. Ha, Y. Lee and H. Ko, Adv. Opt. Mater., 2018, 6, 1800615.
- 10 S. Ghosh, S. Paul and S. K. De, Part. Part. Syst. Charact., 2018, 35, 1800199.
- 11 J. Zhou, J. Luo, X. Rong, P. Wei, M. S. Molokeev, Y. Huang, J. Zhao, Q. Liu, X. Zhang and J. Tang, *Adv. Opt. Mater.*, 2019, 7, 1900139.

12 Z. Li, X. Liu, C. Zuo, W. Yang and X. Fang, Adv. Mater., 2021, 33, 2103010.