Supporting Information

High performance flexible electromagnetic interference shielding material realized by ZnO nanorod decorated polyvinylidene fluoride (PVDF)-MXene composite nanofibers

Sol Lee, Minje Kim, Viet Anh Cao, Joomin Park, Ick-Jae Yoon, Pangun Park and Junghyo Nah*

Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea *Corresponding author: jnah@cnu.ac.kr

Keywords: Electromagnetic interference shielding material, nanofiber, MXene, ZnO nanorods, oxidation resistance

Sputtered ZnO NRs decorated PVDF-MXene NFs (back side view)

Sputtered ZnO NRs decorated PVDF-MXene NFs (front view)

Fig. S1 SEMs of ZnO NRs decorated PVDF-MXene NFs by sputtering method. Red circles indicate the shaded regions where ZnO seed layer cannot be deposited.

Fig. S2 TEM and EDS analysis of electrospun MXene-CTAB-ZnO embedded NFs.

Fig. S3 XPS Zn 2p analysis of ZnO NR-decorated PVDF-MXene NFs.

Fig. S4 (left) SEMs of PVDF-MXene composite NFs containing bulk MXene and MXene nanoflakes (right) stress-strain curves of each NF film

Fig. S5 Average fiber diameter distribution of PVDF NFs

Fig. S6. Reflectivity and absorptivity of ZnO NRs decorated PVDF-MXene composite NF. (left) without a protective layer (right) with a protective layer

Fig. S7 Long-term stability of the ZnO NRs decorated PVDF-MXene NFs after 6 months. (a) EMI SE and absolute EMI SE (b) Stress-strain curves.

Fig. S8. Piezoelectric outputs of ZnO NRs decorated PVDF-MXene NFs based piezoelectric motion sensor under different motions

	Material	Thickness (mm)	SE (dB)	$SSE_t (dB \cdot cm^2/g)$	Ref.
Carbon	RGO/Fe ₃ O ₄ /SiO ₂	0.15	32	12608	[1]
	CNT/RGO	2	31	2735	[2]
	CNT/polymer	0.15	35	1370	[3]
	CNT/cellulose	0.024	35	3800	[4]
	PI/GN	2.5	24	13750	[5]
MXene	HCNF/MXene	0.058	32	5223	[6]
	MXene/ANF	0.017	33	15529	[7]
	MXene/PEDOT:PSS	0.011	42.1	19497	[8]
	MXene/TiO ₂ /rGO	0.009	28	30293	[9]
	Porous MXene	2	75	18116	[10]
Metal	PVDF/MXene/AgNWs	0.03	25	1091	[11]
	AgNWs/CF fabric	0.036	106	6752	[12]
	PAN/SiO ₂ /Ag	0.005	22.6	20571	[13]
PVDF	PVDF-MXene	0.0015	50.3	17860	This work
	ZnO NRs decorate PVDF-MXene	0.0015	61	21830	This work

Table S1 Comparison of thickness, EMI SE, and absolute EMI SE of ZnO NRs decoratedPVDF-MXene NFs and other works.

References

- Y. Yuan, W. Yin, M. Yang, F. Xu, X. Zhao, J. Li, Q. Peng, X. He, S. Du, Y. Li, *Carbon*, 2018, **130**, 59-68.
- L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, *Carbon*, 2019, 145, 61-66.
- 3 L.-Q. Zhang, B. Yang, J. Teng, J. Lei, D.-X. Yan, G.-J. Zhong, Z.-M. Li, J. Mater. Chem. C, 2017, 5, 3130-3138.
- Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi, W. Zhai, L. Zhang, X. Wei, W. Zheng, *Carbon*, 2016, 100, 375-385.
- L.Q. Zhang, S.G. Yang, L. Li, B. Yang, H.D. Huang, D.X. Yan, G.J. Zhong, L. Xu,
 Z.M. Li, ACS Appl. Mater. Interfaces, 2018, 10, 40156-40167.
- 6 Y. Chen, Y. Li, Y. Liu, P. Chen, C. Zhang, H. Qi, ACS Appl. Mater. Interfaces, 2021,
 13, 36221-36231.
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang, Q. Ma, *Nanoscale*, 2019, 11, 23382-23391.
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, *ACS Appl. Mater. Interfaces*, 2018, 10, 44787-44795.
- 9 C. Xiang, R. Guo, S. Lin, S. Jiang, J. Lan, C. Wang, C. Cui, H. Xiao, Y. Zhang, *Chem. Eng. J.*, 2019, 360, 1158-1166.
- 10 R. Bian, G. He, W. Zhi, S. Xiang, T. Wang, D. Cai, J. Mater. Chem. C, 2019, 7, 474-478.
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen, X. Liu, *Adv. Compos. Hy. Mater.*, 2021, 4, 505-513.
- 12 L.-C. Jia, L. Xu, F. Ren, P.-G. Ren, D.-X. Yan, Z.-M. Li, *Carbon*, 2019, 144, 101-108.

13 T.-T. Li, Y. Wang, H.-K. Peng, X. Zhang, B.-C. Shiu, J.-H. Lin, C.-W. Lou, *Compos. A Appl. Sci. Manufac.*, 2020, **128**, 105685.