Supporting Information

Enhanced Photothermal Stability of In-situ Grown FAPbBr₃ Nanocrystals in Polyvinylidene Fluoride by Incorporation of Cd²⁺ Ions

Jizhong Liu,^{a,b} Hui Fu,^{*b} Zhentao Du,^{*a} Deliu Ou,^a Shixian Li,^b Qiaochu Chen,^b Weiyou Yang,^b Jialong Zhao^c and Jinju Zheng^{*b}

^a School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

^b Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211,

China

^c School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for

Non-ferrous Metals and Materials, Guangxi University, Nanning 530004, China

Graphical Table of Contents

^{*} Corresponding authors. E-mails: <u>fuh1218@126.com</u> (H. Fu), <u>zhentaodu@126.com</u> (Z. Du), and <u>zhengzhao2007@163.com</u> (J. Zheng).

We reported the enhanced photothermal stability of in-situ grown FAPbBr₃ perovskite nanocrystals in polyvinylidene fluoride by incorporation of Cd^{2+} ions, which with potential applications in backlight devices.

Fig. S1 XRD patterns of pure PVDF film.

Fig. S2 Grain size distribution histograms of undoped FAPbBr₃ PNCs (a) and Cd²⁺-doped FAPbBr₃ (Cd/Pb = 0.6) PNCs (b).

Fig. S3 XPS spectra of Pb 4f (a) and Br 3d (b) in purified undoped FAPbBr₃ and Cd²⁺-doped FAPbBr₃ (Cd/Pb = 0.6) PNCs.

Fig. S4 Normalized PL spectra of Cd²⁺-doped (Cd/Pb varied from 0.1 to 0.6) and undoped FAPbBr₃@PVDF films before (a) and after (b) annealing at 393 K for half an hour.

Fig. S5 XPS spectra of Pb 4f (a) and Br 3d (b) of purified undoped FAPbBr₃ PNCs and Cd²⁺-doped FAPbBr₃ (Cd/Pb = 0.6) PNCs before and after annealing at 393 K for half an hour.

Fig. S6 The digital photograph of Cd^{2+} -doped FAPbBr₃@PVDF (Cd/Pb = 0.7) film, under UV irradiation

at 365 nm.

Fig. S7 PL peak wavelength evolution after different periods in an oven at 333 K of Cd²⁺-doped (Cd/Pb varied from 0.1 to 0.6) and undoped FAPbBr₃@PVDF films.

Fig. S8 PL peak wavelength evolution after different periods under continuous blue-light irradiation (460 nm, 13 mW/cm² at film surface) of Cd²⁺-doped (Cd/Pb varied from 0.1 to 0.6) and undoped FAPbBr₃@PVDF films.

Fig. S9 The digital photographs under UV irradiation at 365 nm of Cd^{2+} -doped (Cd/Pb varied from 0.1 to 0.6) and undoped FAPbBr₃@PVDF films treated in the environment of 333 K and blue-light (460 nm, 13 mW/cm²) irradiation for different time.

sample -	Binding E	nergy (eV)	Binding Energy (eV)		
	Br ⁻ 3d _{5/2}	Br ⁻ 3d _{3/2}	$Pb^{2+} 4f_{7/2}$	$Pb^{2+} 4f_{5/2}$	
Cd/Pb = 0.6	68.69	69.66	138.79	143.69	
Cd/Pb = 0.5	68.64	69.65	138.73	143.63	
Cd/Pb = 0.4	68.58	69.60	138.62	143.49	
Cd/Pb = 0.3	68.48	69.46	138.61	143.47	
Cd/Pb = 0.2	68.35	69.35	138.54	143.41	
Cd/Pb = 0.1	68.28	69.26	138.53	143.40	
Undoped	68.15	69.13	138.48	143.35	

Table S1. The binding energy of Pb 4f and Br 3d in Cd²⁺-doped (Cd/Pb varied from 0.1 to 0.6) and undopedFAPbBr₃@PVDF films.

Table S2. Comparison	of stability	parameters of halide	perovskites
	2	1	

Perovskite	Treatment	Emission	PLQY	Photostability	Thermostability	Ref.
		peak (nm)	(%)		, ,	
CsPbBr ₃	Integrated with mesoporous silica nanoparticles.	519		80% (96 h, 365 nm, 6 W)		1
CsPbBr ₃	Silica-coated	519	87	80% (168 h, 365 nm, 16 W)	85% (293 K heat up to 393 K)	2
CsPbBr ₃	Encapsulated in Dimethicone	522		55% (2 h, UV)	56% (273 K heat up to 353 K),	3
CsPbBr ₃	Encapsulate with a poly-diphenylvi- nylphosphine-styrene copolymer	518	90	64% (142 h, 365 nm)		4
CsPbBr ₃	Surface treatment using ammonium hexafluorosilicate		84	93% (53 h, 450 nm, 175 mW/cm ²)	90% (293 K heat up to 353 K)	5
CsPbBr ₃	Anchoring on BN nanosheets	523	71	95% (96 h, 365 nm)	50% (303 K heat up to 373 K),	6
CsPbBr ₃	Assembled on natural mineral halloysite nanotubes	526	56	82% (144 h, 365 nm)	60% (298 K heat up to 393 K)	7
CsPbBr ₃	N-alkylmonoamine ligands	515	96	80% (1 h, 450 nm, 9.3 mW/mm ²)		8
CsPbBr ₃ /CsPb ₂ Br ₅	Coordinated with partially hydrolyzed poly (methyl methacrylate) and polyethylenimine	520	75	60% (120 h, 365 nm, 2W)		9
CsPbCl ₃	Mn ²⁺ -doped	396, 587	54	40% (1 h, 2000 W)		10
CsPbCl ₃	Zn ²⁺ -doped	409	88	46% (70 h, 365 nm, 6W)	47% (273 K heat up to 413 K)	11
CsPbCl ₃	Cd ²⁺ -doped	406	98	60% (260 h, 365 nm, 8W)		12
CsPbCl ₃	Cd ²⁺ -doped and CdCl ₂ surface passivation	381	60	83% (168 h, 330 nm, 8 W)	54% (3 h, 358 K)	13
CsPb(Br/Cl) ₃	Cu ²⁺ -doped	455	80		75% (annealing at 523K)	1.4
CsPbBr ₃	Cu ²⁺ -doped	506	95		50% (annealing at 523K)	14
CsPbBr ₃	Sn ²⁺ -doped	512	82		93% (105 min, 353K)	15
FAPbBr ₃	Cd ²⁺ -doped	530	75	96% (360 h, 460 nm, 13 mW/cm ²)	99% (0.5 h, 363K) 97% (48 h, 333 K and blue-light irradiation)	This work

References

- H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai and R. S. Liu, *Angew. Chem. Int. Ed. Engl.*, 2016, 55, 7924-7929.
- 2. F. Gao, W. Q. Yang, X. L. Liu, Y. Z. Li, W. Z. Liu, H. Y. Xu and Y. C. Liu, *Chem. Eng. J.*, 2021, 407, 128001.
- 3. Y. G. Yang, Q. Q. Li, Y. F. Liu, R. Cong, Y. Sun, J. S. Hou, M. Y. Ge, J. C. Shi, F. Zhang, G. Y. Zhao, N. Zhang, Y. Z. Fang and N. Dai, *ACS Appl. Nano Mater.*, 2020, **3**, 4886-4892.
- 4. W. Q. Yang, L. L. Fei, F. Gao, W. Z. Liu, H. Y. Xu, L. L. Yang and Y. C. Liu, *Chem. Eng. J.*, 2020, **387**, 124180.
- 5. Q. Zhang, Z. Li, M. Liu, L. Kong, W. Zheng, B. Wang and L. Li, J. Phys. Chem. Lett., 2020, 11, 993-999.
- 6. M. M. Yu, X. He, D. Y. Li, J. Lin, C. Yu, Y. Fang, Z. Y. Liu, Z. L. Guo, Y. Huang and C. C. Tang, J. Mater. Chem. C, 2021, 9, 842-850.
- 7. J. Hao, X. Qu, L. Qiu, G. Li, Y. Wei, G. Xing, H. Wang, C. Yan, H. S. Jang, Z. Cheng and J. Lin, Adv. Opt. Mater., 2018, 7, 1801323.
- 8. W. K. Lin, G. X. Chen, E. L. Li, H. X. Xie, G. Peng, W. J. Yu, H. P. Chen and T. L. Guo, Org. Electron., 2020, 86, 105869.
- 9. G. Jiang, C. Guhrenz, A. Kirch, L. Sonntag, C. Bauer, X. Fan, J. Wang, S. Reineke, N. Gaponik and A. Eychmuller, ACS Nano, 2019, 13, 10386-10396.
- 10. H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang and B. Yang, ACS Nano, 2017, 11, 2239-2247.
- 11. V. Naresh and N. Lee, ACS Appl. Nano Mater., 2020, **3**, 7621-7632.
- 12. N. Mondal, A. De and A. Samanta, ACS Energy Lett., 2019, 4, 32-39.

- 13. Y. Zhang, X. Cheng, D. Tu, Z. Gong, R. Li, Y. Yang, W. Zheng, J. Xu, S. Deng and X. Chen, Angew. Chem. Int. Ed. Engl., 2021, 60, 9693-9698.
- 14. C. Bi, S. Wang, Q. Li, S. V. Kershaw, J. Tian and A. L. Rogach, J. Phys. Chem. Lett., 2019, 10, 943-952.
- 15. D. Yan, Q. Mo, S. Zhao, W. Cai and Z. Zang, *Nanoscale*, 2021, **13**, 9740-9746.