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Fig. S1. Two dimensional TLC analysis of mQEDTT-T2 with chloroform/n-hexane = 6:4 (v/v)
as the eluent.



Table S1. Total and relative total energies of quinoidal monomers mQEDOT-Br and
mQEDTT-Br for each possible geometrical configuration obtained by density functional theory
(DFT) calculations at B3LYP/6-311G (d, p) level

Total energy toﬁelﬂ:;igregy
(Hartree) (kcal / mol)
mQEDOT-Br (Z,7) -6881.42707233 0
mQEDOT-Br (Z,E) -6881.42113553 3.72
mQEDOT-Br (E,E) -6881.41056024 10.4
mQEDTT-Br (ZE) -7527.37468504 0
mQEDTT-Br (Z,2) -7527.37205471 1.65
mQEDTT-Br (E,E) -7527.37087468 2.39
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Fig. S2. UV-vis absorption spectra and absorption coefficient of mQEDOT-Br and
mQEDTT-Br in TCE.
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Fig. S3. Optimized molecular geometries of mMQEDOT-Br and mQEDTT-Br obtained by DFT
calculations at the B3LYP/6-311G (d, p) level.
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Fig. S4. '"H NMR (400 MHz, CDCl;) spectrum of mQEDOT-Br.
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S5. 'TH NMR (400 MHz, CDCls) spectrum of mQEDTT-Br.
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Fig. S6. 3C NMR (400 MHz, CDCl;) spectrum of mQEDOT-Br.
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Fig. S7. 13C NMR (400 MHz, CDCls) spectrum of mQEDTT-Br.
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Fig. S8. Experimental and simulated resonant Raman spectra of (a) mQEDOT-Br and (b)
mQEDTT-Br thin films. Theoretical eigenvectors of Raman vibration modes of (¢) mQEDOT-
Br and (d) mQEDTT-Br.



Table S2. Reaction conditions for the synthesis and physical properties of PmQEDOT-T2 and
PmQEDTT-T2

Temp. Time M,

Polymer Entry Catalyst Ligand Solvent ©C) (h) (kDa) PDI

T2 1 ,(dba), toly), Toluene 110 72 30.1 2.01 fraction

1 Pd@pa), @ Toluene me 72 270 13 O
2 3 tolyl), : : fraction

PmQEDTT- Pd (dba P(o- Toluene/DMF CF
T2 2 ,(dba), tolyl), —9/1 110 72 457 134 L on

Toluene/DMF CF

Pd(PPh -

3 ( 3)4 —4.5/1 120 25 20.3 3.06 fraction
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Fig. S9. (a) Thermogravimetric analyses and (b, c¢) differential scanning calorimetry curves of

PmQEDOT-T2 and PmQEDTT-T2 polymers.
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Fig. S10. "H NMR spectrum (600 MHz, CsD4Cl,) of PmQEDOT-T2 polymer.
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Fig. S11. 'TH NMR spectrum (600 MHz, CDCl;) of PmQEDTT-T2 polymer.
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Fig. S12. Optimized molecular geometries of mMQEDOT-T2 and mQEDTT-T2 dimers obtained
by DFT calculations at the B3LYP/6-311G (d, p) level.

12



[ 20v |
40V
4{—60V
—-80V
< 3
= 5]
1
Y
1] =20 =40 80
Ve (V)
10° 25
V,=-80V
{20
w
10%4 o
3
E {15 &
>
= 110 2
1074 ’:i
0.5
10* r——————1— 0.0
80 60 40 -20 O
v,V

(b)

0.20
—20V
aHv
—60V
0.15
—80V
g
= 010
0.05 -
0.00 - 2 :
0 20 40 60 80
VeV

v,v)

(,,¥) 01 x (*) ubs

_—
()
S—

1| (na)

1, (A)

20
20V
-40V
16|—-60 V
—-80V
1.2
0.8
0.4 4
0.0 S
0 20 40 60
v,V
10° T
80 60 -40 20 O
Vg(V)

e
o

(,,¥) <01 % (") ubs

—_—
Q.
~

0.05 f
—20V
a0V !
0.04{— 60V
g 0.03 |
= 0.02]
0.01-|
0.00
0
Vi(V)
V,=80V 118
116
10°+ 114,
a
- 1273
= Z
= 11.0%
= o 1082
{06 %
0.4
0.2
W 0.0
0 20 40 60 80
Vv,V

Fig. S13. Output and transfer curves of pristine (a, b) PmQEDOT-T2 and (¢, d) PmQEDTT-
T2- based OTFTs.
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Table S3. Device performance parameters
based OTFTs

of pristine PmQEDOT-T2 and PmQEDTT-T2-

p-channel n-channel
polymer
Hr(em?/Vs) Vg (V) Lo/ 1oy He(em?/Vs) Vg, (V) Lo/ 1oy
1.4 %107 6.3 x 10+
PmQEDOT-T2 -43 102 35 102
(2.7 X 102)* (8.8 X 10%)
4.8 X103 9.6 X 10
PmQEDTT-T2 -33 102 27 <10!
(5.5 % 10%) (1.0 X 10%)

AMaximum mobility
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Fig. S14. AFM height images of (a, b) PmQEDOT-T2 and (c, d) PmQEDTT-T2 films.

15



— 1000

— 100
10

PmQEDOT-T2

= 1000

g: (A7)
-1
q. (A7)

0.0 0.4 0.8 1.2 1.6 2.0

4, A"
Fig. S15. 2D-GIWAXS images of pristine (a) PmQEDOT-T2 and (b) PmQEDTT-T2 films
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Table S4 Crystallographic information of PmQEDOT-T2 and PmQEDTT-T2 films obtained
by 2D-GIWAXS

Annealing In plane (A) Out of plane (A)
temp. (°C) d(100) d(010) d(100)  d(001)  d(001")
PmQEDOT- Pristine 23.0 - _ _ )
" 250 21.7 3.7 23.3 - _
PmQEDTT- Pristine 259 - . _ )
T2 200 214 - - 20.9 9.2
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