Supporting Information

Highly Stable CsPbBr₃-SiO₂ Glass Ceramic Film Sintered on Sapphire Plate for Laser-Driven Projection Displays

Jiamin Sun, Zhentong Lu, Yi Liu, Dongwei Zheng, Juqing Li, Lei Jin, Jiayu Zhang, Haoran Zhang, Yingliang Liu, Xuejie Zhang, * and Bingfu Lei*

*Corresponding authors E-mail: tleibf@scau.edu.cn; zhangxuejie@scau.edu.cn

Fig. S1. The PL spectra of CsPbBr₃-SiO₂ film-on-SP with various ratio of host glass powder to CsPbBr₃-SiO₂ powder.

Note: Fig. S1 illustrated the effect of different glass powder contents on the luminous intensity of CsPbBr₃-SiO₂ film-on-SP. The ratios of the host glass to CsPbBr₃-SiO₂ powder were 1:1, 3:1, 5:1 and 7:1, respectively, and the rest of the preparation procedure was consistent with the synthesis of CsPbBr₃-SiO₂ film-on-SP in the experimental section. The results indicate that the increase of the non-luminescent host glass leads to the reduction of the luminescence centers and sacrifices the luminescence of the CsPbBr₃-SiO₂ film-on-SP. However, when the amount of host glass powder is low (1:1, 3:1), the CsPbBr₃-SiO₂ film easily peels off from the sapphire, since the softened glass is insufficient to bond all the CsPbBr₃-SiO₂ powder to the sapphire during high-temperature sintering. The final ratio of the host glass to CsPbBr₃-SiO₂ powder is

optimized to be 5:1, based on the comprehensive considerations the luminescent intensity of the CsPbBr₃-SiO₂ film-on-SP and the adhesion performance between sapphire and glass.

Fig. S2. XRD pattern of CsPbBr₃-SiO₂ sample.

Fig. S3. Photos of CsPbBr₃-SiO₂ film-on-SP under daylight and 365 nm UV lamp.

Fig. S4. SEM image of CsPbBr₃-SiO₂ powder.

Fig. S5. (a) The surface fluorescence distribution image and (b) 3D reconstruction image of CsPbBr₃-SiO₂ film-on-SP.

Fig. S6. (a) The size distribution of CsPbBr₃ NCs in CsPbBr₃-SiO₂ powder; the size distributions of CsPbBr₃ NCs in (b) CsPbBr₃-SiO₂ film-on-SP and (c) in CsPbBr₃-SiO₂ powder after sintering at 620 °C for 30 min.

Fig. S7. TEM image of CsPbBr₃-SiO₂ powder sintered at 620 °C for 30 min.

Table S1. The calculated lifetimes of CsPbBr₃-SiO₂ powder and CsPbBr₃-SiO₂ film-on-SP.

Sample	τ_1 (ns)	Rel (%)	τ ₂ (ns)	Rel (%)	$ au_{avg}$ (ns)
CsPbBr ₃ -SiO ₂	8.8288	47.48	46.4731	52.52	28.5983
CsPbBr ₃ -SiO ₂ film-on-SP	7.9710	40.31	45.0487	59.69	30.1008

Fig. S8. PL spectra of CsPbBr₃-SiO₂ film-on-SP in the cycle of temperature from 298 K to 373 K (corresponding to the (a) first, (b) second, and (c) third cycle, respectively).

Fig. S9. PL spectra variation of CsPbBr₃-SiO₂ film-on-SP as a function of immering times in water.

Fig. S10. Measurement system for "fluorescence wheel" based laser-driven lighting device with reflection mode.

Fig. S11. Measurement system of blue laser power and spot size.

Fig. S12. CIE diagram showing the color coverage region of prototype lighting source in comparison with the NTSC standard and the Rec. 2020 standard.