Electronic Supplementary Information

Strong electron-phonon coupling driven charge density wave states in stoichiometric 1T-VS₂ crystals

Si-Hong Lee¹, Yun Chang Park², Jinwoong Chae^{3,4}, Gunn Kim^{3,4}, Hyuk Jin Kim⁵, Byoung Ki Choi^{5,6}, In Hak Lee^{5,7}, Young Jun Chang^{5,8}, Seung-Hyun Chun³, Minkyung Jung⁹, Jungpil Seo^{1*}, Sunghun Lee^{3*}

¹Department of Physics and Chemistry, DGIST, Daegu 42988, Korea.

²Department of Measurement and Analysis, National Nanofab Center, Daejeon 34141, Korea.

³Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea.

⁴Hybrid Materials Research Center, Sejong University, Seoul 05006, Korea.

⁵Department of Physics, University of Seoul, Seoul 02504, Korea.

⁶Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

⁷Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea.

⁸Department of Smart Cities, University of Seoul, Seoul 02504, Korea.

⁹DGIST Research Institute, DGIST, Daegu 42988, Korea.

*Corresponding authors email; jseo@dgist.ac.kr (J.S). kshlee@sejong.ac.kr (S.L.)

Element	line type	k factor	absorption correction	wt%	wt% sigma	atomic %
V	K series	1.1350	1.00	41.04	0.11	32.44
S	K series	0.9804	1.00	58.96	0.18	67.56
Total:				100.00		100.00

Table S1. Elemental composition obtained from Energy-dispersive X-ray spectroscopy (EDX). The atomic ratio of V and S were 32.44% and 67.56%, respectively, indicating V/S = 1/2.08.

Figure S1. Left panel: Representative selective area electron diffraction (SAED) patterns of asgrown VS₂ bulk crystal before low temperature vacuum annealing treatment. Right panels: Simulated SAED patterns of trigonal VS₂ (top) and monoclinic V₅S₈ (bottom). The lattice planes in the red and green circles are indexed for the trigonal VS₂ (top) and monoclinic V₅S₈, respectively. Note that lattice information of VS₂ and V5S₈ are as following: trigonal VS₂ – P_{3m1} space group, a = 3.221 Å, c = 5.755 Å and monoclinic V₅S₈ – $C_{2/m}$ space group, a = 11.399 Å, b = 6.668 Å, c = 7.919 Å, $\beta = 134.4^{\circ}$.

Figure S2. (a) Plot of ARPES intensity for bulk VS_2 along the ΓM (hv = 128 eV) direction at 15 K. (b) Electronic band structure obtained from the DFT calculations of bulk VS_2 .

-200 mV

200 mV

Figure S3. STM topographic and corresponding fast Fourier transform (FFT) images of filled states (-200, -100, and -50 mV) and empty states (50, 100, and 200 mV). Magenta, orange, and green dashed hexagons indicate basis, $\sqrt{6} \times \sqrt{6}$ R30°, and 4×4 CDW lattices, respectively.