Electronic Supplementary Information

Strong electron-phonon coupling driven charge density wave states in stoichiometric 1T-VS\textsubscript{2} crystals

Si-Hong Lee1, Yun Chang Park2, Jinwoong Chae3,4, Gunn Kim3,4, Hyuk Jin Kim5, Byoung Ki Choi5,6, In Hak Lee5,7, Young Jun Chang5,8, Seung-Hyun Chun3, Minkyung Jung9, Jungpil Seo1*, Sunghun Lee3*

1Department of Physics and Chemistry, DGIST, Daegu 42988, Korea.
2Department of Measurement and Analysis, National Nanofab Center, Daejeon 34141, Korea.
3Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea.
4Hybrid Materials Research Center, Sejong University, Seoul 05006, Korea.
5Department of Physics, University of Seoul, Seoul 02504, Korea.
6Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
7Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea.
8Department of Smart Cities, University of Seoul, Seoul 02504, Korea.
9DGIST Research Institute, DGIST, Daegu 42988, Korea.

*Corresponding authors email; jseo@dgist.ac.kr (J.S). kshlee@sejong.ac.kr (S.L.)
Table S1. Elemental composition obtained from Energy-dispersive X-ray spectroscopy (EDX). The atomic ratio of V and S were 32.44% and 67.56%, respectively, indicating V/S = 1/2.08.

<table>
<thead>
<tr>
<th>Element</th>
<th>line type</th>
<th>k factor</th>
<th>absorption correction</th>
<th>wt%</th>
<th>wt% sigma</th>
<th>atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>K series</td>
<td>1.1350</td>
<td>1.00</td>
<td>41.04</td>
<td>0.11</td>
<td>32.44</td>
</tr>
<tr>
<td>S</td>
<td>K series</td>
<td>0.9804</td>
<td>1.00</td>
<td>58.96</td>
<td>0.18</td>
<td>67.56</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td>100.00</td>
<td>0.18</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Figure S1. Left panel: Representative selective area electron diffraction (SAED) patterns of as-grown VS$_2$ bulk crystal before low temperature vacuum annealing treatment. Right panels: Simulated SAED patterns of trigonal VS$_2$ (top) and monoclinic V$_5$S$_8$ (bottom). The lattice planes in the red and green circles are indexed for the trigonal VS$_2$ (top) and monoclinic V$_5$S$_8$, respectively. Note that lattice information of VS$_2$ and V$_5$S$_8$ are as following: trigonal VS$_2$ – P_{3m1} space group, $a = 3.221$ Å, $c = 5.755$ Å and monoclinic V$_5$S$_8$ – $C_{2/m}$ space group, $a = 11.399$ Å, $b = 6.668$ Å, $c = 7.919$ Å, $\beta = 134.4^\circ$.
Figure S2. (a) Plot of ARPES intensity for bulk VS$_2$ along the Γ_M ($h\nu = 128$ eV) direction at 15 K. (b) Electronic band structure obtained from the DFT calculations of bulk VS$_2$.
Figure S3. STM topographic and corresponding fast Fourier transform (FFT) images of filled states (-200, -100, and -50 mV) and empty states (50, 100, and 200 mV). Magenta, orange, and green dashed hexagons indicate basis, $\sqrt{6} \times \sqrt{6}R30^\circ$, and 4×4 CDW lattices, respectively.