Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Boosted charge transfer and CO₂ photoreduction by construction of

S-scheme heterojunction between Cs₂AgBiBr₆ nanosheets and

two-dimensional metal-organic frameworks

Ying Jiang, Rui Zhou, Zhijie Zhang*, Zhongliang Dong, Jiayue Xu*

School of Materials Science and Engineering, Shanghai Institute of Technology, 100

Haiquan Road, Shanghai, 201418, P. R. China

*Corresponding author. *Email address*: <u>zjzhang@sit.edu.cn</u> (Z. J. Zhang);

xujiayue@sit.edu.cn (J. Y. Xu)

Figure S1 TEM image of the as-prepared Ni-MOF NSs.

Figure S2 High-angle annular dark-field (HAADF) image and EDX elemental mappings of C, O, and Ni elements in Ni-MOF.

Figure S3 TEM image of the as-prepared CABB NSs.

Figure S4 XPS survey spectra of CABB NSs, Ni-MOF NSs, and the CABB/Ni-MOF hybrid.

Figure S5 Time courses of (a) CO and (b) CH_4 evolution by CABB NSs, Ni-MOF NSs, and the CABB/Ni-MOF hybrids.

Figure S6 Comparison of $R_{electron}$ values of CABB NSs, Ni-MOF NSs, and the CABB/Ni-MOF hybrids.

Figure S7 Mass spectra showing ${}^{13}CO$ and ${}^{13}CH_4$ produced over CABB/Ni-MOF hybrid in the photocatalytic reduction of ${}^{13}CO_2$.

Figure S8 XRD pattern of the recycled CABB/Ni-MOF hybrid.

Figure S9 TEM image of the recycled CABB/Ni-MOF hybrid.

Figure S10 FTIR spectrum of the recycled CABB/Ni-MOF hybrid.

Figure S11 TEM image of the 0D/2D CABB/Ni-MOF hybrid.

Figure S12 Comparison of photocatalytic CO_2 reduction activities of the 0D/2D and 2D/2D CABB/Ni-MOF hybrids.

Photocatalyst	Light source	Products	$R_{electron} (\mu mol \; g^{\text{-1}} \; h^{\text{-1}})$	Ref.
CABB/Ni-MOF	300 W Xe lamp	CO, CH ₄	241.14	this work
Cs ₂ AgBiBr ₆ NCs	100 W Xe lamp	CO, CH ₄	16.2	1
Cs ₂ AgBiBr ₆ NPLs	405 nm laser diode	CO, CH ₄	42.6	2
Cs ₂ AgBiBr ₆ - Cu - RGO	300 W Xe lamp	CO, CH ₄ , H ₂	93	3
Cs ₂ AgBiBr ₆ /CTF-1	300 W Xe lamp	CO, CH ₄	130.2	4
Cs ₂ AgBiBr ₆ @M-Ti	300 W Xe lamp	CO, CH ₄	271.6	5
CsPbBr ₃ QDs/GO	100 W Xe lamp	CO, H_2, CH_4	29.8	6
CsPbBr ₃ QDs/g-C ₃ N ₄	300 W Xe lamp	СО	149	7
P3HT/CsPbBr ₃	300 W Xe lamp	CO, CH ₄	475.3	8
C ₆₀ /CsPbBr ₃	300 W Xe lamp	CO, CH ₄	90.2	9
CsPbBr ₃ /MWCNT	300 W Xe lamp	CO, CH ₄	116.2	10
CsPbBr ₃ NCs/UiO-66(NH ₂)	300 W Xe lamp	CO, CH ₄	18.5	11
CsPbBr ₃ QDs/Bi ₂ WO ₆ NS	300 W Xe lamp	CO, CH ₄	114.4	12
CsPbBr ₃ NCs/BP NS	200 W Xe lamp	CO, CH ₄	175.0	13
CsPbBr ₃ /CTF-1	300 W Xe lamp	СО	48.2	14
CsPbBr ₃ NCs/MXene	300 W Xe lamp	CO, CH ₄	110.6	15
CsPbBr ₃ NCs@a-TiO ₂	150 W Xe lamp	H _{2,} CO, CH ₄	64.5	16
CsPbBr ₃ NCs@ZIF-67	100 W Xe lamp	CO, CH ₄	29.6	17
CsPbBr ₃ -Re(CO) ₃ Br(dcbpy)	150 W Xe lamp	H ₂ , CO	73.34	18
CsPbBr ₃ NCs/ZnO/RGO	150 W Xe lamp	CO, CH ₄	52.0	19
α-Fe ₂ O ₃ /RGO/CsPbBr ₃	150 W Xe lamp	H _{2,} CO, CH ₄	81.0	20
2D/2D CsPbBr ₃ /Bi ₂ WO ₆	150 W Xe lamp	H _{2,} CO, CH ₄	137.1	21
CsPbBr ₃ NCs/MoS ₂ NS	300 W Xe lamp	CO, CH ₄	152.4	22
CsPbBr ₃ NCs/Pd NS	150 W Xe lamp	$H_{2,}CO, CH_{4}$	33.8	23
CsPbBr ₃ -Au	100 W Xe lamp	CO, CH ₄	47.7	24
$CsPbBr_3-Ni(tpy)$	300 W Xe lamp	CO, CH_4	1252	25

Table S1 A comparison of the photocatalytic CO_2 reduction performances by various perovskite-based photocatalysts.

References

1. L. Zhou, Y. Xu, B. Chen, D. Kuang, C. Su, Small, 2018, 14, 1703762.

2. Z. Liu, H. Yang, J. Wang, Y. Yuan, K. Hills-Kimball, T. Cai, P. Wang, A. Tang, O. Chen, *Nano Lett.*, 2021, **21**, 1620-1627.

3. S. Kumar, I. Hassan, M. Regue, S. Gonzalez-Carrero, E. Rattner, Mark. A. Isaacs,

S. Eslava, J. Mater. Chem. A, 2021, 9, 12179.

4. Z. Zhang, Y. Jiang, Z. Dong, Y. Chu, J. Xu, *Inorg. Chem.*, 2022, **61**, 16028-16037.
5. Q. Sun, J. Xu, F. Tao, W. Ye, C. Zhou, J. He, J. Lu, *Angew. Chem. Int. Ed.*, 2022, **61**, 202200872.

6. Y. Xu, M. Yang, B. Chen, X. Wang, H. Chen, D. Kuang, C. Su, J. Am. Chem. Soc., 2017, **139**, 5660-5663.

7. M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, *Angew. Chem. Int. Ed.*, 2018, **57**, 13570–13574.

8. L. Li, Z. Zhang, C. Ding, J. Xu, Chem. Eng. J., 2021, 419, 129543.

9. Z. Zhang, M. Shu, Y. Jiang, J. Xu, Chem. Eng. J., 2021, 414, 128889.

10. M. Shu, Z. Zhang, Z. Dong, J. Xu, Carbon, 2021, 182, 454-462.

11. S. Wan, M. Ou, Q. Zhong, X. Wang, Chem. Eng. J., 2019, 358, 1287-1295.

12. J. Wang, J. Wang, N. Li, X. Du, J. Ma, C. He, Z. Li, ACS. Appl. Mater. Interfaces, 2020, **12**, 31477-31485.

13. X. Wang, J. He, J. Li, G. Lu, F. Dong, T. Majima, M. Zhu, *Appl. Catal. B: Environ.*, 2020, **277**, 119230.

14. Q. Wang, J. Wang, J. Wang, X. Hu, Y. Bai, X. Zhong, Z. Li, *ChemSusChem*, 2021, 14, 1-10.

15. A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He, Y. Liu, *J. Phys. Chem. Lett.*, 2019, **10**, 6590–6597.

16. Y. Xu, X. Wang, J. Liao, B. Chen, H. Chen, D. Kuang, Adv. Mater. Interfaces, 2018, 1801015.

17. Z. Kong, J. Liao, Y. Dong, Y. Xu, H. Chen, D. Kuang, C. Su, ACS Energy Lett., 2018, **3**, 2656-2662.

18. Z. C. Kong, H. H. Zhang, J. F. Liao, Y. J. Dong, Y. Jiang, H. Y. Chen, D. B. Kuang, *Sol. RRL*, 2019, **4**, 1900365.

19. Y. Jiang, J. F. Liao, Y. F. Xu, H. Y. Chen, X. D. Wang, D. B. Kuang, J. Mater. Chem. A, 2019, 7, 13762-13769.

20. Y. Jiang, J. F. Liao, H. Y. Chen, H. H. Zhang, J. Y. Li, X. D. Wang, D. B. Kuang, *Chem*, 2020, **6**, 766-780.

21. Y. Jiang, H. Chen, J. Li, J. Liao, H. Zhang, X. Wang, D. Kuang, *Adv. Funct. Mater.*, 2020, **30**, 2004293.

22. X. Wang, J. He, L. Mao, X. Cai, C. Sun, M. Zhu, *Chem. Eng. J.*, 2021, 416, 128077.
23. Y. F. Xu, M. Z. Yang, H. Y. Chen, J. F. Liao, X. D. Wang, D. B. Kuang, *ACS Appl. Energy Mater.*, 2018, 1, 5083-5089.

24. J. F. Liao, Y. T. Cai, J. Y. Li, Y. Jiang, X. D. Wang, H. Y. Chen, D. B. Kuang, J. *Energy Chem.*, 2021, **53**, 309-315.

25. Z. Chen, Y. Hu, J. Wang, Q. Shen, Y. Zhang, C. Ding, Y. Bai, G. Jiang, Z. Li, N. Gaponik, *Chem. Mater.*, 2020, **32**, 1517-1525.