Large-scale synthesis of Carbon Quantum Dots for Efficient

Luminescent Solar Concentrators

Bingxu Liu^{#,1}, Lihua Wang^{#,1}, Xiao Gong^{2,*}, Haiguang Zhao^{1,*}, Yuanming Zhang^{1,*}

¹College of Physics, College of Textiles and Clothes, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P. R. China.

²State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.

#These authors contributed equally.

*Corresponding authors. Email: xgong@whut.edu.cn; Zhangyuanming001@163.com; hgzhao@qdu.edu.cn

Fig. S1 (a) The mixture of the CA (5 g), $CaCl_2$ (5 g) and urea (10 g); (b) The slurry (15.4 g) after the solid-state reaction; (c-d) The dispersed C-dots in methanol under room light (c) and UV illumination (d).

Fig. S2 The solid powder after reaction using CA (200 g), CaCl₂ (200 g) and urea (400 g) as precursors.

Fig. S3 SAED pattern of C-dots produced by (a) CaCA and (b) CA+CaCl₂. The C-dots have a typical cubic carbon structure (#75-0222).

Binding energy (eV)

Fig. S4 High resolution C1s and N1s spectra of the C-dots produced with different precursors.

Fig. S5 FT-IR spectrum of the C-dots produced using CaCA/urea as precursors.

Fig. S6 High resolution Ca 2p spectra of the C-dots produced with different precursors.

Fig. S7 PL spectra of the C-dots produced using FeCA/urea, MgCA/urea and CuCA/urea as precursors.

Fig. 8 Absorption of C-dots synthesized using different metal chloride. The purified C-dots were dispersed in water for measurements.

Fig. 9 High resolution absorption of C-dots in the emission range.

Fig. S10 Photographs of the LSC based on C-dots synthesized using CaCA/urea as precursors under one sun (100 mW/cm²) illumination. LSC dimensions, $10 \times 10 \times 0.43$ cm³.

Fig. S11 Photographs of the LSC based on C-dots synthesized using CA/urea/MnCl₂ as precursors under one sun (100 mW/cm²) illumination. LSC dimensions, $10 \times 10 \times 0.43$ cm³.

Fig. S12 The PL spectrum of the LSC based on the C-dots produced by CA/urea. The LSC was illuminated by the UV light for different time.

Table S1 The calculated cost of the C-dots produced by solid-state reaction. The calculation only considers the cost of chemicals used for the synthesis.

	Price \$/Kg	Link
CaCA	60	https://www.aladdin-e.com/zh_cn/c194985.html
CA	20	https://www.aladdin-e.com/zh_cn/c112635.html
Urea	14	https://www.aladdin-e.com/zh_cn/u111897.html
CaCl ₂	14	https://www.aladdin-e.com/zh_cn/c399250.html
BaCl ₂	20	https://www.aladdin-e.com/zh_cn/b111752.html
C-dots (CaCA)	368	
C-dots (CA+CaCl ₂)	83	

For the C-dots using CaCA (~520 g) and urea (~400 g), the yield is 11%, the price of C-dots is 0.4 g/g.

For the C-dots using CA, urea and CaCl₂, the yield is 25%, the price of C-dots is 0.08/g. For the C-dots using CA, urea and BaCl₂, the yield is 25%, the price of C-dots is 0.1/g.