Supplementary Information

Near-infrared emission of a novel nonconventional luminophore for in vitro imaging

Qinbin Zhang ^{a, 1}, Chuan Huang ^{a, 1}, Shilu Huang ^a, Haijiao Xie ^b, Qing

Huang ^{a*}, Mingming Guo ^{a*}

^a School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

^b Hangzhou Yanqu information Technology Co., Ltd, Hangzhou, Zhejiang Province, 310003, P.R.O.C.

^c + 1 The two authors contribute to the work equally.

E-mail address: guomm57@swu.edu.cn (M. Guo); bzzqb19990226@163.com

Table of contents

Table S1 The mixtures molar ratios of ITA with DMF and DMSO.

Fig. S1 In-situ ¹H NMR spectra of the reaction pathway of ITA and TEA (*d*-chloroform).

- Fig. S2 ¹H NMR spectrum of 0.2M ITA in *d*-chloroform.
- **Fig. S3** ¹H NMR spectrum of 0.2M TEA in *d*-chloroform.
- Fig. S4 ¹H NMR spectrum of 0.2M I-TEA in *d*-chloroform.
- Fig. S5 UV-vis spectra of ITA, TEA and I-TEA
- Fig. S6 absolutely quantum yield (C) and ns-scale lifetime decay profile (A) of 1mg/mL I-
- TEA/DMSO; (B) The µs-scale lifetime decay profile of I-TEA powder at 77K.

Fig. S7 In-situ ¹H NMR spectra of the mixture of ITA and TEA (molar ratio= 1:1).

Table S2 maximum excitation and emission wavelength of I-TEA at different concentrations

Fig. S8 ¹H NMR spectra of ITA-0.2M, DMF-0.2M and ITA&DMF-0.2M0.2M in *d*-acetone.

Fig. S9 ¹H NMR spectra of ITA-0.2M, DMSO-0.2M and ITA&DMSO-0.2M0.2M in *d*-acetone.

- Fig. S10 3D spectrograms and maximum emission spectra of ITA&DMSO-1M1M, ITA&DMSO-
- 1M2M and ITA&DMSO-1M6M.

Fig. S11 ¹H NMR spectra of DMF-1M and ITA&DMF-1M1M in *d*-benzene.

Fig. S12 ¹H NMR spectra of DMSO-1M and ITA&DMSO-1M1M in *d*-benzene.

Fig. S13 ¹H NMR spectrum of ITA&DMSO-1M6M (*d*-benzene).

Fig. S14 ¹H, ¹H-COSY spectrum of ITA&DMSO-1M6M (*d*-benzene).

- Fig. S15 ¹H NMR spectrum of ITA&DMF-1M13M.
- Fig. S16 ¹H, ¹H-COSY spectrum of ITA&DMF-1M13M.
- Fig. S17 ¹H NMR spectrum of ITA&DMSO-1M14M.
- Fig. S18 ¹H NMR spectrum of ITA&DMF-2M13M.
- Fig. S19 ¹H NMR spectrum of ITA&DMF-4M13M.

Fig. S20 ¹H NMR spectrum of ITA&DMSO-2M14M.

Fig. S21 ¹H NMR spectrum of ITA&DMSO-4M14M.

Fig. S22 3D spectrograms of ITA&NVP-0.5M0.5M, ITA&NVC-0.5M0.5M, ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M.

Fig. S23 Emission spectra of the mixtures (ITA&NVP-0.5M0.5M, ITA&NVC-0.5M0.5M,

ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M) and the individual molecules (ITA-0.5M, NVP-0.5M, NVC-0.5M and Py-0.5M).

Fig. S24 UV-vis spectra of the mixtures (ITA&NVP-0.5M0.5M, ITA&NVC-0.5M0.5M, ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M) and the individual molecules (ITA-0.5M, NVP-0.5M, NVC-0.5M and Py-0.5M).

Mixtures	ITA	DMSO	V _{Total} (mL)
ITA&DMF-0.2M0.2M	112.1 mg	77.1 μL	5 mL
ITA&DMF-1M1M	560.4 mg	385.5 μL	5 mL
ITA&DMF-1M2M	560.4 mg	771.0 μL	5 mL
ITA&DMF-1M6M	560.4 mg	2313.1 μL	5 mL
ITA&DMF-1M10M	560.4 mg	3855.2 μL	5 mL
ITA&DMSO-0.2M0.2M	560.4 mg	71.0 μL	5 mL
ITA& DMSO -1M1M	560.4 mg	355.1 μL	5 mL
ITA& DMSO -1M2M	560.4 mg	710.3 μL	5 mL
ITA& DMSO -1M6M	560.4 mg	2130.8 μL	5 mL
ITA& DMSO -1M10M	560.4 mg	3551.4 μL	5 mL

Table S1. The mixtures molar ratios of ITA with DMF and DMSO.

Figure S1. In-situ ¹H NMR spectra of the reaction pathway of ITA and TEA (*d*-chloroform).

Figure S2. The ¹H NMR spectrum of 0.2M ITA in *d*-chloroform.

Figure S4. The ¹H NMR spectrum of 0.2M I-TEA in *d*-chloroform.

Figure S5. The UV-vis spectra of ITA, TEA and I-TEA

Figure S6. The absolutely quantum yield (C) and ns-scale lifetime decay profile (A) of lmg/mL I-TEA/DMSO; (B) The μ s-scale lifetime decay profile of I-TEA powder at 77K.

Figure S7. The in-situ ¹H NMR spectra of the mixture of ITA and TEA (molar ratio= 1:1). (The "*" represent the resonance peaks of solvents and TMS)

C _{I-TEA}	$\lambda_{\max}(\mathbf{nm})$	λ_{\max} (nm)
1 mg/mL	580	601
10 mg/mL	595	656
20 mg/mL	645	725
40 mg/mL	700	799

Table S2. The maximum excitation and emission wavelength of I-TEA at different concentrations

Figure S8. The ¹H NMR spectra of ITA-0.2M, DMF-0.2M and ITA&DMF-0.2M0.2M in *d*-acetone.

Figure S9. The ¹H NMR spectra of ITA-0.2M, DMSO-0.2M and ITA&DMSO-0.2M0.2M in *d*-acetone.

Figure S10. The 3D spectrograms and maximum emission spectra of ITA&DMSO-1M1M, ITA&DMSO-1M2M and ITA&DMSO-1M6M.

Figure S11. The ¹H NMR spectra of DMF-1M and ITA&DMF-1M1M in *d*-benzene.

Figure S12. The ¹H NMR spectra of DMSO-1M and ITA&DMSO-1M1M in *d*-benzene.

Figure S13. The ¹H NMR spectrum of ITA&DMSO-1M6M (*d*-benzene). (The "*" represent the satellite peaks and solvent peak)

Figure S14. The ¹H, ¹H-COSY spectrum of ITA&DMSO-1M6M (*d*-benzene).

Figure S15. The ¹H NMR spectrum of ITA&DMF-1M13M. (The "*" represent the satellite peaks from DMF)

Figure S16. The ¹H, ¹H-COSY spectrum of ITA&DMF-1M13M.

Figure S17. ¹H NMR spectrum of ITA&DMSO-1M14M. (The "*" represent the satellite peaks)

Figure S18. ¹H NMR spectrum of ITA&DMF-2M13M. (The "*" represent the satellite peaks)

Figure S19. ¹H NMR spectrum of ITA&DMF-4M13M. (The "*" represent the satellite peaks)

Figure S20. ¹H NMR spectrum of ITA&DMSO-2M14M. (The "*" represent the satellite peaks)

Figure S21. ¹H NMR spectrum of ITA&DMSO-4M14M. (The "*" represent the satellite peaks)

Figure S22. The 3D spectrograms of ITA&NVP-0.5M0.5M, ITA&NVC-0.5M0.5M, ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M.

Figure S23. Emission spectra of the mixtures (ITA&NVP-0.5M0.5M, ITA&NVC-0.5M0.5M, ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M) and the individual molecules (ITA-0.5M, NVP-0.5M, NVC-0.5M and Py-0.5M).

Figure S24. UV-vis spectra of the mixtures (ITA&NVP-0.5M0.5M, ITA&NVC-0.5M0.5M, ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M) and the individual molecules (ITA-0.5M, NVP-0.5M, NVC-0.5M and Py-0.5M).

The 3D emission spectra of the mixtures (ITA&NVP-0.5M0.5M, ITA&NMP-0.5M0.5M and ITA&Py-0.5M0.5M) (Supplementary Figure S22 A, C and D) and the emission spectra of the mixtures and individual molecules (ITA&0.5M, NVP-0.5M, NMP-0.5M and Py-0.5M) (Supplementary Figure S23 A, D and E) shown that the mixtures have significant PL characteristics and the emission of the mixtures were not from the individual molecules directly. Meanwhile, the 3D emission spectra of the mixture (ITA&NVC-0.5M0.5M) (Supplementary Figure S22 B) showed

two emission centers, and the emission spectra of mixture and individual molecules (ITA-0.5M and NVC-0.5M) (Supplementary Figure S23 B and C) showed the emission center at the long-wavelength region was not from the individual molecules directly, which demonstrated the presentence of new emission center in the mixture. The UV-vis spectra of all the mixtures and individual molecules (Supplementary Figure S24 A-D) showed the absorbance of the mixtures were stronger than the individual molecules and the absorption of the mixtures were both appeared at the redder region when compared to the individual molecules. These phenomena illustrated the existence of extended conjugation with electron delocalization in the mixtures and thereby giving the PL characteristics to the mixtures.