## ARTICLE

## **Supporting Information**

Multi-dimensional Dynamic Fluorescence Readout from Laser Engineered In<sub>2</sub>O<sub>3</sub> Nanowire Micropattern

Eng Tuan Poh,<sup>ab</sup> Yung Zhen Tan,<sup>c</sup> Justin Boon Shuan Neo,<sup>c</sup> Chee How Ong,<sup>c</sup> Azianty Saroni,<sup>d</sup> Zheng Zhang,<sup>e</sup> Jianhui Li,<sup>b</sup> Boon Tong Goh,\*<sup>d</sup> Chorng Haur Sow\*<sup>b</sup>



Figure S1. Production and basic characterization of pristine In<sub>2</sub>O<sub>3</sub> nanowires. a) Schematic layout of RF plasma - assisted evaporation chamber utilized for In<sub>2</sub>O<sub>3</sub> nanowire production. Inset: Photograph image of instrument during the plasma - assisted evaporation process. b) Uniform nanowire distribution under SEM imaging. Inset: Higher magnification image demonstrating single wire uniformity and dimensions. c) Corresponding EDX analysis output for dedicated SEM area in b). d) OM bright field image of nanowire distribution, along with corresponding FM images (under UV light excitation) with e) 4s, f) 15s exposure time. g) Laser power variable PL spectrum profiles of nanowire array under 325 nm excitation. Inset: Intensity to laser power (%) correlation for the respective peaks at 621.3 and 769.1 nm. h) Acquired Raman spectrum of the nanowire array under 532 nm excitation. i, j) Selected large area EDX mapping for the In<sub>2</sub>O<sub>3</sub> nanowire sample of elemental signals i) In La and j) O Ka lines, providing a corresponding k) compositional ratio close to In<sub>2</sub>O<sub>3</sub> formulae ratio. I) XRD profile and m) HRTEM imaging of In<sub>2</sub>O<sub>3</sub>

nanowires. Inset: Complementary SAED crystallograph. n-q) XPS spectra for the respective elements n) C1s o) In3d p) N1s q) O1s.



Figure S2. Fitting parameters for PL peak deconvolution under variable laser intensity modification. PL spectrum and fitting statistics for pristine sample (left), sample region of yellow fluorescence induced by low intensity (low lens NA) laser modification (middle), and sample region of reduced emission from higher intensity (high lens NA) laser modification (right).



Figure S3. Parameter variation of laser modification under low laser intensity. a) OM bright field display of low intensity (low lens NA) laser raster array under influence of laser power and laser speed permutations. b) Corresponding FM overview of laser raster array in a). For both images: vertical top down – laser power variation in increments of 10 mW, from 20 mW to 80 mW; horizontal left right – variations in laser raster speed in increment of 10  $\mu$ m/s, from 10  $\mu$ m/s to 60  $\mu$ m/s.



ARTICLE

Figure S4. TEM EDX elemental analysis of nanowire tip composition. a) TEM image of selected nanowire, with EDX analysis region demarcated under white boxed region. b-e) Corresponding elemental analysis spectrum and various elemental maps for the respective c) In L $\alpha$ , d) O K $\alpha$  and e) N K $\alpha$  line signals. f) Overall composition ration from the region elemental analysis.

Through the acquired atomic % of the various elements, we can determine the excess In present based upon the assumption that the N and O content exists only in the respective InN and  $In_2O_3$  forms.

InN: 10.83% N  $\rightarrow$  10.83% In required In<sub>2</sub>O<sub>3</sub>: 39.60% O  $\rightarrow$  26.40% In required Total In content – In content in InN and In<sub>2</sub>O<sub>3</sub> = 49.58% – (10.83% + 26.40%) = 12.35% excessive In content



Figure S5. Nano-morphological features from high intensity (high lens NA) laser modification of samples under controlled environments. a) OM of nanowire domains, with its corresponding b) FM images under ambient condition laser irradiation. c) SEM and d) higher magnification SEM images of laser modified regions, highlighting the nanofibrous networks. e) OM of nanowire domains, with its corresponding f) FM images laser engineering under high oxygen content. g) SEM and h) higher magnification SEM images of laser modified regions, highlighting the fibrous cluster morphologies. i) OM of nanowire domains, with its corresponding j) FM images after laser alterations under vacuum conditions. g) SEM and h) higher magnification SEM images of laser modified regions, highlighting the melted particle morphology.



**Figure S6. Sample fluorescence distribution with fluorescence microscope z-axial variation.** a) OM bright field display of sample under low intensity (low lens NA) laser modification. b) Corresponding FM overview of laser modified region at highest zfocus. Surrounding unmodified nanowire domains in clear focus. c-e) Subsequent z-focus downward adjustment for sample fluorescence distribution profile: c) top layer focus of blue wire edges d, e) low height layer focus of underlying yellow fluorescence regions.



Figure S7. Sample fluorescence evolution under time-varied UV exposure ON-OFF. a) OM layout of high intensity (high lens NA) sample laser modified region after prolonged ambient exposure. b-j) Corresponding time points across UV exposure duration and influence on sample fluorescence – b)  $t = 0 \min c$ )  $t = 1 \min d$ ) t = 2mins e)  $t = 3 \min f$ )  $t = 4 \min g$ )  $t = 7 \min h$ )  $t = 12 \min d$ ) t = 27mins j)  $t = 27.5 \min d$ , demonstrating decreasing blue component with increased exposure time. k, l) Corresponding time points after cut-off of UV exposure and effect on sample fluorescence – k)  $t = 62 \min l$ )  $t = 72 \min d$ , demonstrating the recovery of the blue fluorescence component.

## Journal Name





t = 210 mins t = 300 mins

a) Low Power Ambient Laser Cut



t = 300 mins

b) High Power Ambient Laser Cut

ARTICLE

Figure S10. Environmental exposure parameters – water exposure reference controls. a) OM and FM images of ambient low intensity (low lens NA) laser modified sample progressively monitored over a range of prolonged water vapor exposure (t = 0 min, 30 mins, 150 mins, 180 mins, 210 mins, 300 mins). b) OM and FM images of ambient high intensity (high lens NA) laser modified sample progressively monitored over a range of prolonged water vapor exposure (t = 0 min, 30 mins, 150 mins, 180 mins, 210 mins, 300 mins).

t = 210 mins



Figure S8. Sample fluorescence evolution under thermal annealing

conditions. a-d) OM bright field layouts comprising sample squares



Figure S9. Environmental exposure parameters - gaseous source exposure reference controls. a-c) FM images of fresh laser altered samples (t = 0 hr) before emplacement within the respective gas chamber environments a) oxygen b) carbon dioxide c) nitrogen. d-f) Corresponding FM images of fluorescence square domains after extended exposure (t = 12 hr) amidst respective d) oxygen e) carbon dioxide f) nitrogen environments.

| No | Nanostructure (In <sub>2</sub> O <sub>3</sub> )        | λ <sub>ex</sub> (nm) | λ <sub>em</sub> (nm)                                 | Emission Mechanism / Species                                                                           | Ref.   |
|----|--------------------------------------------------------|----------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|
| 1  | Cubic phase thin film                                  | 364                  | Orange, Broad, 400-800                               | Oxygen deficiencies                                                                                    | 52     |
| 2  | Nanowire array (AAO)                                   | 250                  | Blue, Broad, 300-600                                 | V <sub>0</sub> <sup>+</sup>                                                                            | 53     |
| 3  | Nanowire array (AAO)                                   | 274, 305             | Blue, Sharp, 385-410                                 | $V_0^+$ (e <sup>-</sup> ) + h <sup>+</sup> $\rightarrow hv$                                            | 54     |
| 4  | Nanowires                                              | 382                  | Broad, 425-455                                       | V <sub>0</sub> <sup>+</sup>                                                                            | 55     |
| 5  | Nanowires                                              | 260                  | Blue, Broad, 300-600                                 | $(V_{in} - V_O)^\circ + V_O^\circ \rightarrow$                                                         | 56, 57 |
|    |                                                        | 325                  | Blue Broad, 390-480                                  | $(V_{in} - V_0)' + V_0^* + hv$                                                                         |        |
| 6  | Nanowires                                              | 254                  | Blue, Broad, 350-650                                 | $V_0^+$ (e <sup>-</sup> ) + h <sup>+</sup> $\rightarrow hv$                                            | 58     |
| 7  | Nanowires                                              | 330                  | Blue, 426, shoulder 406, 450                         | $V_0^+$ (e <sup>-</sup> ) + h <sup>+</sup> $\rightarrow hv$                                            | 59     |
| 8  | Nanowires                                              | 325                  | Orange, Broad, 450-800                               | Orange: V <sub>0</sub>                                                                                 | 60     |
|    |                                                        |                      |                                                      | Others (UV, blue, green, NIR): nanostructure, impurity, confinement                                    |        |
| 9  | Ultrathin Nanowires                                    | 325                  | Green, Broad, 440-620                                | Deep donor $V_0$ , Excitons, defect bound excitons and donor acceptor pairs                            | 61     |
| 10 | Nanowires on thin film                                 | 266, 375             | Orange, Broad, 496-827<br>Blue, Sharp, 365-400       | Blue: Exciton, defect bound excitons and donor acceptor pairs                                          | 62     |
|    |                                                        |                      |                                                      | Orange: $V_0^+$ (e <sup>-</sup> ) + $V_{In}''/(V_0^-V_{In})'$ (h <sup>+</sup> ) $\rightarrow hv$       |        |
| 11 | Nanowires, Nanobelts                                   | 325                  | Orange, Broad, 450-900                               | $V_0^+$ (e <sup>-</sup> ) + h <sup>+</sup> $\rightarrow hv$                                            | 63–66  |
|    |                                                        |                      |                                                      | Deep $V_0$ or surface In                                                                               |        |
| 12 | Nanowhiskers                                           | 325                  | Blue, Broad, 350-620                                 | Blue: $V_0^{\circ}$ (e <sup>-</sup> ) + $(V_{1n} - V_0)^{\circ}$                                       | 34     |
|    |                                                        |                      | Yellow, Sharp, 500-800                               | Orange: $V_0^+$ (e <sup>-</sup> ) + VB/ $V_0^{++}$ (h <sup>+</sup> )                                   |        |
| 13 | Nanofibers, Hollow<br>Nanotubes                        | 250                  | Blue, Broad, 400-700                                 | Deep donor V <sub>o</sub>                                                                              | 67, 68 |
| 14 | Nanotubes                                              | 325                  | Blue, Broad, 385; Green +<br>Orange, Broad, 537, 630 | Blue: Near band edge                                                                                   | 69     |
|    |                                                        |                      |                                                      | Green: Vo                                                                                              |        |
|    |                                                        |                      |                                                      | Orange: In <sub>i</sub>                                                                                |        |
| 15 | Nanocones                                              | 390                  | Orange, Broad, 450-750<br>NIR, 800-950               | Broad: $V_0^+$ (e <sup>-</sup> ) + $V_0^-$ (h <sup>+</sup> ) $\rightarrow hv$<br>NIR not accounted for | 70     |
| 16 | In@In <sub>2</sub> O <sub>3</sub> core shell nanowires | 325                  | Red, Broad, 500-1000                                 | Blue: Band edge emission; Yellow: $ln_{i_a}$ ;<br>Red: $ln_{i_c}$ ; $V_0^+$ - $ln_i$                   | 71     |
| 17 | Short nanorods                                         | 300                  | Blue, Broad, 380-550                                 | Near band edge emission                                                                                | 72     |
| 18 | Nanotowers                                             | 325                  | Yellow, Broad, 460-750                               | V <sub>0</sub> <sup>+</sup> (e <sup>-</sup> ) + VB/V <sub>0</sub> <sup>++</sup> (h <sup>+</sup> )      | 73     |
| 19 | Nanocrystals                                           | 234                  | Blue, Sharp, 400-450; shoulder<br>350-400            | Quantum confinement                                                                                    | 74     |
| 20 | Octahedrons                                            | 325                  | Yellow, Broad, 500-850                               | Variable defect species: $V_0^+$ , $In_i^{2+}$ , $O_{In}$ , $V_{In}$ , $O_i$ , $In_i^{3+}$             | 75     |
| 21 | $In_2O_3$ and $H-In_2O_3$ nanoclusters                 | 280                  | Blue, Sharp, 320-500; Green,<br>Broad, 500-650       | Blue: V <sub>0</sub> ° (e <sup>_</sup> ) + VB (h <sup>+</sup> )                                        | 76     |
|    |                                                        |                      |                                                      | Green: CB ( $e^{-}$ ) + V <sub>0</sub> <sup>+</sup> (h <sup>+</sup> )                                  |        |

## Table S1. Summary of past literature works pertaining to $In_2O_3$ nanostructures and related PL emissions.