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EXPERIMENTAL SECTION 

Materials and synthesis. New phosphor samples with nominal composition of 

LaZn1-xAl11O19: xMn2+ (x = 0 - 0.4) were prepared via solid-state reaction method at 

1600℃ for 4 hours under 85% N2+15% H2 reductive atmosphere by using the starting 

reagents: La2O3, ZnO, Al2O3, SiO2 and MnCO3 (A.R.) powders. 

The PiG sample was prepared by co-sintering LaZn1-xAl11O19: xMn2+ phosphor 

particles and the TeO2-B2O3-ZnO-Na2O low-melting glass via a two-step melt-

quenching method. Precursor glasses were prepared by a conventional melting-

quenching method. The reagent grade chemicals were mixed thoroughly and melted in 

a platinum crucible at 750 ℃ for 0.5 h in ambient atmosphere. Then, the melt was 

poured into a cold copper mold and then cooled to room temperature. The prepared 

glass was milled to powders using a ball grinder, and then mixed with the 

La(Zn,Mn)Al11O19 phosphors thoroughly and sintered in a platinum crucible at 540 ℃ 

for 20 min in ambient atmosphere.1-2 As a proof-of-concept experiment, the remote-

type NIR-LED was constructed by encapsulating a stacking PiG plate on the 

commercial blue chip (InGaN~ 450 nm). The PiG color converter was horizontally 

fastened on the blue chip, with opaque silica gel coated around the edge to prevent 

leakage of blue light.

Characterization. The powder X-ray diffraction (PXRD) patterns of the as-

obtained samples were collected on a X' Pert PRO diffractometer (Cu Kα radiation, λ 

= 1.5406 Å) at 298 K. The microstructure was analyzed using a scanning electron 

microscope (SEM, JSM-6700F). The X-ray photoelectron spectroscopy (XPS, Thermo 



fisher Scientific K-Alpha) was conducted to identify the chemical states of the elements 

in the sample. A FLS-980 fluorescence spectrophotometer (Xe 900, 450 W arc lamps) 

was employed to obtain the photoluminescence (PL), photoluminescence excitation 

(PLE), and decay curve spectra. An absolute photoluminescence quantum yield 

measurement system (Hamamatsu, Quantaurus-QY plus C13534-31) was adopted to 

test the quantum efficiency. The photoelectric performance of the obtained w-LED 

device was measured in an integrating sphere of 50 cm diameter, which was connected 

to a CCD detector with an optical fiber (ATA 100, Everfine).

Computational methods. Utilizing density functional theory (DFT) as 

implemented in the Vienna ab-initio simulation package code,3 we investigate the 

electronic structures of title compound. We used projector augmented wave (PAW) 

method4 for the ionic cores and the generalized gradient approximation (GGA) for the 

exchange-correlation potential, in which the Perdew-Burke-Ernzerhof (PBE) type5 

exchange-correlation was adopted. The reciprocal space was sampled with 0.03 Å−1 

spacing in the Monkhorst-Pack scheme for structure optimization, while denser k-point 

grids with 0.01 Å−1 spacing were adopted for properties calculation. We used a mesh 

cutoff energy of 400 eV to determine the self-consistent charge density. All geometries 

are relaxed until the Hellmann-Feynman force on atoms is less than 0.01 eV/Å and the 

total energy change is less than 1.0×10−5 eV. The calculation models were built from 

the crystal structure.
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Figure S1. 2D plot of deformation charge when one Mn atom replace the Al or Zn site.



Figure S2. Spin-polarized band structure of D1 and D3 models. The Fermi energy is set to 0 eV.



Figure S3. Spin-polarized band structure and DOS of Mn single and dimer doped models. The 

Fermi energy is set to 0 eV.
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Figure S4. (a) XRD patterns of La(Zn1-xMnx)Al11O19 (x = 0-1) and standard cards PDF# No. 78-

1845 (LaZnAl11O19) and No. 77-0335 (LaMnAl11O19). (b-d) The representative Rietveld 

refinements of samples with x=0, 0.3 and 0.8, the red lines, the black crosses and the yellow short 

lines represent the calculated patterns, experimental patterns and the Bragg reflection positions, 

respectively. (e) the lattice parameters of La(Zn1-xMnx)Al11O19 (x = 0-1).
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Figure S5. (a) SEM image of LaZnAl11O19 and elemental mapping of La(Zn1-xMnx)Al11O19 (x = 0, 

0.3 and 0.8). (b) EDS data and elemental contents of LaZn1-xMnxAl11O19 with x = 0, 0.3, 0.8 and 1.
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Figure S6. DR spectra of LaZn1-xMnxAl11O19 samples.
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Figure S7. QE spectra and values of LaZn1-xMnxAl11O19 with x = 0-1.
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Figure S8. XPS spectra of LaZn1-xMnxAl11O19 (x = 0-1).
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Figure S9. (a) Integrated emission intensity of LaZn0.2Mn0.8Al11O19 at various heating temperature, 

and (b) the corresponding Huang-Phys parameter.
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Figure S10. XRD pattern of LaZn0.2Mn0.8Al11O19-PiG sample
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Figure S11. (a) (b) DR and QE spectra of PiG sample.
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Figure S12. The emission spectra of PiG immersed in various containers.



Table S1. The refinement results of La(Zn,Mn)Al11O19

Crystallographic Parameters Reliability Factors
Sample

a=b(Å) c(Å) V(Å3) α=β(°) γ(°) Rp(%) Rwp(%) Rexp(%)

x=0 5.558 19.08 589.6 90 120 7.21 9.40 6.22

x=0.2 5.565 19.08 590.9 90 120 8.92 10.38 5.89

x=0.3 5.570 19.07 591.8 90 120 5.68 7.47 4.44

x=0.4 5.574 19.08 592.5 90 120 6.33 8.69 2.83

x=0.5 5.581 19.05 593.3 90 120 9.45 11.23 7.53

x=0.6 5.584 19.07 594.9 90 120 10.42 12.65 8.05

x=0.7 5.597 19.06 597.3 90 120 11.42 14.6 4.86

x=0.8 5.599 19.07 597.8 90 120 6.00 8.13 5.60

x=1.0 5.602 19.09 599.1 90 120 13.20 14.1 8.30



Table S2. The QE value of La(Zn,Mn)Al11O19 phosphor

ratio of Zn:Mn IQE-green part (%) IQE-NIR part (%) Abs

10:0 48.2 -1.6 0.053

8:2 65.4 -0.7 0.076

7:3 99.9 -1.7 0.06

6:4 57.5 3.9 0.142

5:5 28.5 12.9 0.121

4:6 0.43 28.6 0.16

3:7 0.20 36.7 0.207

2:8 0.00 55.7 0.207

1:9 0.00 21.2 0.269

10:0 0.00 16.1 0.298



Table S3. The typical doublet with 3/2 and 1/2 spin of Mn2+.

Sample 2p
3/2

 (eV) 2p
1/2

 (eV)
Peak I-Peak II 

(eV)

0.1Mn 641.67 655.08 13.47

0.2Mn 642.78 654.78 12.00

0.3Mn 641.40 653.38 11.98

0.5Mn 642.58 654.48 11.90

0.7Mn 643.08 654.78 11.70

0.8Mn 642.98 654.58 11.60

0.10Mn 642.58 654.18 11.60



Table S4. The photoelectric parameters of NIR-LED

current(mA) NIR-Output (mW) Input (mW) Photoelectric efficiencies(%)

50 5.6 134 4.2

100 9.5 277 3.4

150 12.4 426 2.9

200 14.7 581 2.5

250 16.7 741 2.3

300 18.5 909 2.0


