Supporting Information

Accelerated Polaron Formation in Perovskite Quantum Dots Monitored Via Picosecond Infrared Spectroscopy

Matthias Nuber, Qi Ying Tan, Daniel Sandner, Jun Yin, Reinhard Kienberger, Cesare Soci and Hristo Iglev

Supporting Information Table of Contents

	Sample Preparation	2
	UV/VIS, PL and Infrared Spectroscopy	2
	Time-Resolved Infrared Spectroscopy	3
	Computational Methods	3
	Time-Resolved PL Measurements	3
	Figure S1	5
	Figure S2	6
	Figure S3	7
	Figure S4	8
Re	eferences	8

Sample Preparation

<u>Chemicals:</u>

Formamidinium bromide (FABr, ≥ 98%), cesium bromide (CsBr, 99.9%), lead (II) bromide (PbBr2, 98%), oleyamine (OLA, technical grade 70%), N,N-Dimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.9%), toluene (99.8%), and chlorobenzene (99.8%) were purchased from Sigma-Aldrich. Octadecene (ODE, technical grade 90%) and oleic acid (OA, technical grade 90%) were purchased from Alfa Aesar.

<u>Cs_{0.2}FA_{0.8}PbBr₃ quantum dot film:</u>

0.008g of CsBr, 0.2g of FABr, and 0.7 of PbBr2 were stirred and dissolved in 5 mL of DMF. Upon complete dissolution, 100 μ L of OA and 50 μ L of OLA were added into the solution. 200 μ L of the solution was then extracted and added into 5 mL of toluene. The solution was left to stir for a day. The solution was subsequently drop casted onto a calcium fluoride substrate. All synthesis were conducted at room temperature.

Cs_{0.2}FA_{0.8}PbBr₃ bulk film:

0.08g of CsBr, 0.2g of FABr, and 0.7g of PbBr2 were stirred and dissolved into 1.67 mL of DMSO till complete dissolution. Chlorobenzene was first spin-coated (4000 rpm) onto a calcium fluoride substrate and the solution was subsequently spin-coated on top of the sample. The resulting film was baked at 100°C for an hour. All synthesis was conducted under nitrogen environment.

<u>Transmission electron microscopy (TEM)</u> was conducted on a JEM-1400 flash electron microscope operating at 100 kV. The TEM samples were prepared by drop-casting the quantum dot solution onto a TEM grid consisting of a carbon supporting film and copper grids.

UV/VIS, PL and Infrared Spectroscopy

Steady-state UV/VIS spectra were recorded on a Shimadzu 1900i spectrometer. Infrared spectra were obtained using a Bruker Vertex 80v FTIR spectrometer. To reduce water vapor absorption effects, the entire spectrometer was evacuated. PL spectra were recorded with a home-made set-up consisting of an iO matchbox wavelength combiner, suitable filters and an Avantes avaspec 3648 fiber spectrometer.

Time-Resolved Infrared Spectroscopy

The time-resolved infrared spectroscopy set-up is based on a Ti:Sapphire CPA-amplifier (Coherent Libra, 100 fs, 1 kHz, 800 nm). The samples were excited close to the band edge at 525 nm employing a two-stage non-collinear optical parametric amplifier (NOPA, Ag Riedle). The pump pulse is polarized parallel to the probe pulse using a lambda/2 plate and a polarizer. After passing a linear delay stage, the pump beam is focused to a diameter of about 100 µm. The probe beams are generated using the signal and idler output of twostage NIR optical parametric amplifier in a difference frequency generation stage with a AgGaS₂ crystal. The probe beam is split into two and is focused onto the sample. One of the probe beams acts as a reference to improve s/n-ratio passing the sample in an unpumped spot. Both probe beams are detected on 2x64 pixel HgCdTe detector (Infrared Associates). The absorbance change Δ OD is calculated as $\Delta OD = -\log_{10} T/T_0$ with T being the transmission measured for the pumped sample and T₀ being the reference signal with the pump pulse being blocked by a chopper wheel.

Computational Methods

The density functional theory (DFT) calculations were performed using the PWSCF code as implemented in Quantum ESPRESSO (QE) package.¹ The crystal structure of cubic-phase FAPbBr₃ was optimized by local density approximation (LDA) exchange-correlation functional and norm-conserving pseudopotentials with electrons from H (1*s*¹), C (2*s*², 2*p*²), N (2*s*², 2*p*³), Br (4*s*², 4*p*⁵), and Pb (6*s*², 6*p*²). The plane-wave basis set cutoff for the wave functions was 50 Ry and for the charge density was 400 Ry, and a uniform grid of 6×6×6 *k*-mesh was used. The crystal structure was fully relaxed until the total force on each atom was less than 0.01 eV/Å. The resulting crystal parameters of ground state for FAPbBr₃ are *a* = 5.96 Å, *b* = 5.77 Å, *c* = 5.90 Å. The infrared vibrational mode positions and intensities (at the Γ point of the first Brillouin zone) for FAPbBr₃ were calculated with the Phonon code as implemented in the QE package. The uniform grids of 8×8×8 Monkhorst-Pack scheme were used for the *k*-point sampling together with self-consistency threshold of 10⁻¹⁴ Ry.

Time-Resolved PL Measurements

To complement the mIR-TA measurements present in the main text, we conducted timecorrelated single photon counting experiments using a home-made set-up. Employing the

S3

NOPA output (as described above) as the pump pulse (with a stretched pulse duration due to an optical fibre involved), the PL signal was recorded by a PerkinElmer SPCM-AQRH-13-FC single photon counter and a Picoquant PicoHarp 300 time tagger.

In the TCSPC measurements, shown below in Figure S4, we find a clearly bimolecular trend lasting up until the ns range.

Figure S1: Vibrational spectrum as obtained from DFT calculations for a FAPbBr $_3$ bulk crystal.

Figure S2: Vibrational normal modes for bulk $FAPbBr_3$ as obtained from DFT calcualtions.

Figure S3: Normalized (to the 1717 cm⁻¹ mode) FTIR spectra of the $Cs_{0.2}FA_{0.8}PbBr_3$ perovskite QDs (a, c) and $Cs_{0.2}FA_{0.8}PbBr_3$ bulk film (b, d) over a wide temperature range. In (a) and (c), the mode around 1717 cm⁻¹ is shown in detail with the peak position depending on the temperature shown in the insets. In (c) and (d), the overall infrared spectrum is shown.

Figure S4: Normalized TCSPC and mIR-TA dynamics at different excitation densities (note that the excitation power of mIR-TA experiments and TCSPC experiments cannot be compared due to different experimental conditions).

References

(1) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.*; et al.* QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials. *J. Phys.: Condens. Matter* **2009**, *21*, 395502.