Supporting Information

Assembling a High-Performance Asymmetric Supercapacitor Based on Pseudocapacitive S doped VSe₂/CNT Hybrid and 2D Borocarbonitride Nanosheets

Sree Raj K A, ¹ K. Pramoda ¹, and Chandra Sekhar Rout*^{,1}

¹ Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain global campus, Jakkasandra, Ramanagaram, Bangalore - 562112, India.

**Corresponding author: csrout@gmail.com, r.chandrasekhar@jainuniversity.ac.in (CSR).*

S1. Experimental

S1.1 Materials

Ammonium metavanadate (NH₄VO₃, SDFCL AR), Selenium dioxide (SeO₂, Himedia), Formic acid (SDFCL AR), Sulphur powder (Himedia), Multi walled carbon nanotube (<5% impurty, 1-10μm length and 3-15 number of walls, Plasma Chem GmbH, Berlin), Boric acid (SDFCL AR), Activated charcoal (Avra), Urea (SDFCL AR) and DI water.

S1.2 Synthesis of S-VSe₂/CNT

117 mg of NH_4VO_3 and 220 mg of SeO_2 is dispersed in 15 mL DI water. Then 5 mL of formic acid is added drop wise into this dispersion. 16 wt % of S powder is dispersed in 10 mL DI water through vigorous 1 hr ultra-sonication. This solution is thoroughly mixed along with the initial dispersion and the solution volume is raised to 40 mL by adding DI water. Further, 50 mg of functionalized (using H_2SO_4 and HNO_3) multiwalled carbon nanotube is added to the mixture under ultra-sonication. The mixture is then transferred into a 50 mL Teflon lined stainless steel autoclave and is kept under 200° C for 24 hrs. After the reaction, the product is collected and washed several times using DI water and ethanol then dried in vacuum at 60° C.

S1.3 Synthesis of BCN

To synthesize BCN, boric acid (60 mg), activated charcoal (500 mg) and urea (2.4 g) are added into DI water under vigorous stirring and kept at 80° C till a slurry is obtained. The obtained slurry is then transferred into a quartz boat, transferred to a tubular furnace and heated at 900° C under N_2 atmosphere. The obtained black powder is kept in air-tight container to utilize for further analysis.

S1.4 Material Characterization

Structural and morphological characterizations of the samples are carried using X-Ray diffraction (XRD, Rigaku Ultima IV X-ray diffractometer with Ni-filter (Cu K α , $\lambda = 0.1541$ nm) and field emission scanning microscope (FESEM, JEOL JSM-7100F, JEOL Ltd., Singapore). Raman spectroscopy is carried out in LABRAM HR (Horiba Jobin Yvon, 488 λ =nm). X-ray photo electron spectroscopy (XPS) measurements are performed in Thermo K-alpha spectrometer using micro focused and monochromated Al K α radiation with an energy of 1486.6 eV.

S1.5 Electrochemical Characterization

Electrochemical assessments of all the samples are carried in a Wuhan Corrtest electrochemical work station. The three-electrode analysis are performed in a conventional three electrode cell with Ag/AgCl as reference electrode, Pt wire as counter electrode, a typical glassy carbon electrode with an area of 0.071 cm² as working electrode and 0.5M K₂SO₄ as electrolyte. The working electrode is prepared by drop casting 5 μ L of active material solution; this is prepared by dissolving 1 mg of active material in a solution containing 95 μ L of propanol and 5 μ L

Nafion binder. The asymmetric supercapacitor is assembled in a typical Swagelok set up with the working electrodes prepared by drop casting active material solution on a circular Ni foam conducting substrate and Whatman filter paper as a separator. Electrochemical impedance spectroscopy (EIS) measurements are obtained in the frequency range of 0.01 Hz - 10 kHz. The mass loading in both positrode and negatrode are 1 mg and 1.56 mg respectively.

S2. Calculations

In three-electrode configuration;

Areal capacitance (C_A) from cyclic voltammetry;

$$C_A = \frac{\int I(V) \, dV}{2 * A * \vartheta * \Delta V} \tag{S1}$$

Where, A is the active area of the electrode, v is the scan rate and ΔV is the potential window. *Areal capacitance* (C_A) from galvanostatic charge discharge;

$$C_A = \frac{i * \Delta t}{A * \Delta V} \tag{S2}$$

Where, i is the applied current, Δt is the discharge time.

Areal capacitance (C_A) from galvanostatic charge discharge for non-linear curves;

$$C_{A} = \frac{2 * i * \int V \, dt}{A * (Vf^{2} - Vi^{2})}$$
(S3)

Areal capacitance (C_A) of ASC from galvanostatic charge discharge;

$$C_A = \frac{i * \Delta t}{A * \Delta V} \tag{S4}$$

Charge balance equation

$$\frac{m_{+}}{m_{-}} = \frac{C_{-} * \Delta V_{-}}{C_{+} * \Delta V_{+}}$$
(S5)

Energy density of ASC;

$$E_D = \frac{1}{2}CV^2 \tag{S6}$$

Where, C is areal capacitance of ASC, V is the working window of ASC.

Power density of ASC;

$$P_D = \frac{E_D}{\Delta t} \tag{S7}$$

S3. Supporting Figures

Figure S1: XPS survey spectrum of S-VSe₂/CNT.

Figure S2: (a) CV and (b) GCD profiles of pristine VSe_2 in various scan rates and current densities respectively, (c) CV and (d) GCD profiles of pristine S-VSe₂ in various scan rates and current densities respectively.

Figure S3: CV curves of S-VSe₂/CNT electrode in both K₂SO₄ and KCl electrolytes.

Figure S4: (a) XRD of BCN, High-resolution XPS spectra of (b) B 1s, (c) C 1s and (d) N 1s of BCN and (e) EDS elemental mapping of BCN sheets showing the uniform distribution of B, C and N.

Figure S5: Nyquist plot of BCN electrode; inset showing the equivalent circuit.

Figure S6: (a) S-VSe₂/CNT//BCN ASC in various working potentials and (b) Nyquist plots of the ASC before and after stability test.

S4. Tables

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$
VSe ₂	13.9	44.3
S-VSe ₂	31.7	20.5
S-VSe ₂ /CNT	14.4	14.8

Table S1: EIS details of VSe₂, S-VSe₂ and S-VSe₂/CNT

 Table S2: Comparison of electrochemical performance of S-VSe2/CNT//BCN ASC with other

 relevant ASCs.

ASC	Electrolyte	Working	Energy Density	Cyclic	Ref
		Window		stability	
		(V)			
Co(OH) ₂ //erGO	PVA-KOH	1.4	11.85 μ Wh/cm ² at		52
(CG-ASC)			0.57 mW/cm^2		
$RuO_2//Ti_3C_2$ in plane	PVA-H ₂ SO ₄	1.5	19 μWh/cm ² at 1.5		44
			mW/cm ²		
Ni-Co DHs/pen	PVA-KOH	1.55	9.75 μ Wh/cm ² at	86%	53
ink/nickel/CF//			0.49 mWh/cm ²	(5000	
ink-coated nickel/CF				cycles)	
Ni(OH) ₂ //AC	PVA-KOH	1.4	11.9 μ Wh/cm ² at	92.7%	54
			0.169 mWh/cm ²	(7000	
				cycles)	
MnO ₂ //Carbon paper	PVA-LiCl	1.8	5.4 μ Wh/cm ² at	90%	55

			0.28 mWh/cm ²	(2000	
				cycles)	
CuCHF//PC	PVA-KC1	2.0	$37.8 \ \mu Wh/cm^2$ at	84%	56
			0.18 mWh/cm ²	(2000	
				cycles)	
CNT@ZnO-	PVA-H ₂ SO ₄	1.5	13.25 μ Wh/cm ² at	96.7%	57
NW@MnO ₂ //CNT			0.21 mWh/cm ²	(1000	
				cycles)	
d-Ti ₃ C ₂ /CF//Ti ₃ C ₂	6М КОН	1.6	18.1 Wh/kg at	80.6%	58
			397.8 W/kg	(5000	
				cycles)	
CuS/Ti ₃ C ₂ //Ti ₃ C ₂	1М КОН	1.5	15.4 Wh/kg at	82.4%	59
			750.2 W/kg	(5000	
				cycles)	
S-VSe ₂ /CNT//BCN	0.5M K ₂ SO ₄	1.65	36.3 μ Wh/cm ² at	87.3%	This
			3.2 mW/cm ²	(5000	Work
				cycles)	