Reprocessable polyurethane elastomers based on reversible ketal exchange: Dielectric properties and water resistance

Jianrong Dong¹, Hongye Yan¹*, Xinhai Lv¹, Zhenbang Wang¹, Zixuan Rao¹, Bailin Zhu², Jun Wu², Yu Zhou¹, Hongxiang Chen^{1,3,*}

¹ School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

² The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

³ Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities , Wuhan 430074, China

Corresponding author. *E-mail address*: hyyan@wust.edu.cn *E-mail address*: chenhx_916@hotmail.com; chenhongxiang@wust.edu.cn

Supplementary information

1. Exchange reaction of ketal-containing model compounds	2
2. ¹ H NMR spectra of reaction mixture	3
3. FTIR spectra of reaction mixture	4
4. Index of hydrogen bonding for polyurethane networks	5
5. Tensile strength, elongation at break, and Young's modulus of KCPU-x	6
6. Contact angles of KCPU- <i>x</i>	7
7. Comparison of KCPU-4 and other dielectric elastomers in the literature	8
8. Stress relaxation of KCPU- <i>x</i> at different temperatures	9
9. Difference in the gauge length before and after stress relaxation	10
10. Stress-strain curves of KCPU- <i>x</i> for three cyclic loading at high temperature	11
11. Stress-strain curves of KCPU- <i>x</i> for three cyclic loading at high temperature	12
12. Healing of KCPU- <i>x</i>	13
13. Recovery efficiency of reprocessing samples	14
References	15

1. Exchange reaction of ketal-containing model compounds

Figure S1 (a) Schematic diagram of exchange reaction between AGK and EG; (b) Gas chromatography of reaction mixtures at different time scales

2. ¹H NMR spectra of reaction mixture

Figure S2 ¹H NMR spectra of reaction mixture of HDO and glycerol at different time scales: (a) 80 °C; (b) 90 °C

3. FTIR spectra of reaction mixture

Figure S3 FTIR spectra of the filtrate after 11 h of reaction, the mixture of glycerol and 2,5-hexadione

4. Index of hydrogen bonding for polyurethane networks

1732

1733

KCPU-3

KCPU-4

bonding $(X_{\rm B})$ for polyure than entworks							
Samples	Free C=O	Bonded C=O	$A_{\rm F}/A_{\rm B}$	X _B			
KCPU-0	1731	1708	0.43	0.68			
KCPU-1	1732	1710	0.26	0.78			
KCPU-2	1732	1709	0.21	0.81			

1709

1711

0.25

0.31

0.78

0.74

Table S1 Bands, absorbance ratio of C=O stretching vibration, and index of hydrogen bonding (X_B) for polyurethane networks

5. Tensile strength, elongation at break, and Young's modulus of KCPU-x

Table S2 Tensile strength, elongation at break, Young's modulus, and healingefficiency of samples before and after healing at 100 °C for 5 h

Samples	Original samples			Healed sam	/0/		
	σ/MPa	ε /% E /MPa		σ/MPa	£/%	E/MPa	η/ /0
KCPU-0	8.04±2.39	673±41	3.0±0.4	1.70±0.42	221±165	1.7±0.3	21.1
KCPU-1	11.79±0.79	724±80	5.0±0.5	1.81±0.18	147±18	4.4±0.6	15.4
KCPU-2	10.01±1.10	620±55	6.8±1.0	2.79±0.09	414±15	5.6±0.4	27.8
KCPU-3	9.78±1.45	596±67	3.8±0.2	4.86±0.37	424±58	3.7±0.9	49.6
KCPU-4	5.30±0.51	617±137	3.2±0.6	3.54±0.34	509±61	3.0±0.5	66.7

 σ is the tensile strength, ε is the elongation at break, and *E* is the Young's modulus.

6. Contact angles of KCPU-*x*

Contact angle	KCPU-0	KCPU-1	KCPU-2	KCPU-3	KCPU-4
Advancing angle	99.3±0.8	93.3±0.6	96.5±0.8	95.5±0.5	102.8±1.3
Receding angle	101.0±1.2	94.3±2.5	97.5±1.4	95.7±1.1	102.5±1.1

Table S3 Advancing angles and Receding angles of KCPU-*x*

7. Comparison of KCPU-4 and other dielectric elastomers in the literature

Table S4 Dielectric constant, dielectric loss, and dielectric loss factor of acrylic and silicone elastomers in the literature

Dialactria Electomore	Dolumors	Dielectric	- Deference			
Dielectric Elastomers	Folymers	arepsilon'	ε''	$\tan\delta$	Reference	
PMMA-3	Acrylic polymer	4.3	0.044	0.01	1	
MBM 104 TPEGs	Acrylic polymer	4.6			2	
VHB 4905 Acrylic polymer		4.7			3	
Wacker Elastosil® 2030/20	siloxane	2.8			3	
BDDA	siloxane	4.6	0.1	0.022	4	
Si-B_IN30	siloxane	4.3	0.047	0.011	5	
TC5005-40 siloxane		4.4	0.11	0.025	6	

 Table S5 Dielectric constant, dielectric loss, dielectric loss factor, and reprocessing

 temperature of polyurethane elastomers in the literature and KCPU-4 in this work

Dielectric Electorica	Dielectric	properties at	: 10 ³ Hz	Reprocessing	Doforonco	
Dielectric Elastomers	ε'	ε"	$\tan\delta$	temperature/ºC	Kelefelice	
6FDA-15-A	1.5	0.023	0.015	-	7	
PU(26 h RT-cure in dried	2.2	0.202	0.062		Q	
air)	5.2	0.202	0.005	-	0	
PU(end of RT-cure)	3.0	0.45	0.15	-	9	
PPG-MDI-TMP	8.6	1.032	0.12	-	10	
p(BA-HEA)@MDI-1	7.1	0.284	0.04	-	11	
Polyether-HDI-BD	8.1	0.203	0.025	-	12	
PDET-MDI-BD	1.5	0.03	0.02	-	13	
PU1400	7.0	0.7	0.1	-	14	
BPU3	7.5	0.338	0.045	-	15	
PU-41.03% PVP	5.5	0.385	0.07	-	16	
Soybean Polyol-MDI	6.1	0.549	0.09	-	17	
Polyol-MDI-Gly-BD	5.0	0.6	0.12	-	18	
PU702	7.2	1.512	0.21	-	19	
Polyether-HDI-CO-BD	10.2	1.02	0.1	-	20	
Сара ^{тм} 2085	8.9	0.712	0.08	-	21	
PU-7LNP	20.0	4.4	0.22	120	22	
KCPU-4	11.9	0.536	0.045	95	This work	

 ε' , Dielectric constant; ε'' , dielectric loss; tan δ , dielectric loss factor.

8. Stress relaxation of KCPU-x at different temperatures

9. Difference in the gauge length before and after stress relaxation

Figure S5 Length difference between two marked points: (a) the original KCPU-3 and (b) the cooled KCPU-3 after stress relaxation at 90 °C

10. Stress-strain curves of KCPU-x for three cyclic loading at high temperature

Figure S6 Stress-strain curves for three cyclic loading at 100 °C: (a) KCPU-1, (b) KCPU-2, and (c) KCPU-4

11. Stress-strain curves of KCPU-x for three cyclic loading at high temperature

Figure S7 Temperature dependence of hysteresis loop area at different load-unload cycles: (a) KCPU-1, (b) KCPU-2, (c) KCPU-3, and (d) KCPU-4

Figure S8 (a) Stress-strain curves of original and healed KCPU-*x*, (b) Stress-strain curves of KCPU-3 after repetitive healing experiments

13. Recovery efficiency of reprocessing samples

Table S6 Reprocessing temperature and recovery efficiency of KCPU-x samples in the tensile strength and elongation at break

Samples	Temperature o	f	Recovery	efficiency	of	Recovery	efficiency	of
	reprocessing/°C		tensile stren	ngth/%		elongation a	at break/%	
KCPU-0	140		40.3±2.1			51.1±10.5		
KCPU-1	120		24.3±0.8			33.8±2.5		
KCPU-2	110		35.8±4.6			31.5±5.2		
KCPU-3	100		23.8±1.7			39.7±3.5		
KCPU-4	95		74.7±2.3			69.4±2.4		

References

- 1. J. Chen, Y. Wang and W. Chen, J. Mater. Chem. C, 2021, 9, 5000-5007.
- P. H. Vargantwar, A. E. Özçam, T. K. Ghosh, and R. J. Spontak, *Adv. Funct. Mater.*, 2012, 22, 2100-2113.
- 3. F. B. Albuquerque and H. Shea, Smart Mater. Struct., 2019, 28, 075042.
- A. Chortos, E. Hajiesmaili, J. Morales, D. R. Clarke and J. A. Lewis, *Adv. Funct. Mater.*, 2020, 30, 1907375.
- 5. F. B. Madsen, L. Yu and A. L. Skov, ACS Macro Lett., 2016, 5, 1196-1200.
- 6. F. Galantini, F. Carpi and G. Gallone, Smart Mater. Struct., 2013, 22, 104020.
- 7. Y. Li, B. Ma, R. Zhang and X. Luo, Polymer, 2022, 253, 125035.
- 8. B. Zimmer, C. Nies, C. Schmitt, C. Paulo and W. Possart, Polymer, 2018, 149, 238-252.
- 9. B. Zimmer, C. Nies, C. Schmitt and W. Possart, Polymer, 2017, 115, 77-95.
- 10. S. Desai, I.M. Thakore, B.D. Sarawade and S. Devi, Eur. Polym. J., 2000, 36, 711-725.
- 11. Y. Zhao, J. Zha, L. Yin, S. Li, Y. Wen and Z. Dang, Polymer, 2018, 149, 39-44.
- 12. S. Oprea, O. Potolinca and V. Oprea, High Perform. Polym., 2011, 23, 49-58.
- A. Marcos-Fernandez, R. Navarro, E. Benito, J. Guzman and L. Garrido, *Eur. Polym. J.*, 2021, 155, 110576.
- K. Raftopoulos, B. Janowski, L. Apekis, K. Pielichowski and P. Pissis, *Eur. Polym. J.*, 2011, 47, 2120-2133.
- 15. S. Oprea, J. Polym. Res., 2011, 18, 1777-1785.
- L. V. Karabanova, G. Boiteux, O. Gain, G. Seytre, L. M. Sergeeva, E. D. Lutsyk and P. A. Bondarenko, *J. Appl. Polym. Sci.*, 2003, 90, 1191-1201.
- 17. A. Zlatanic, C. Lava, W. Zhang and Z. S. Petrovic, J. Polym. Sci. B, 2004, 42, 809-819.
- 18. S. Oprea, V. Musteata and V. O. Potolinca, J. Elastomers Plast., 2011, 43, 559-575.
- 19. Z. S. Petrovic, I. Javni and G. Banhegy, J. Polym. Sci. B, 1998, 36, 237-251.
- 20. S. Oprea, J. Appl. Polym. Sci., 2011, 119, 2196-2204.
- M. Zajac, H. Kahl, B. Schade, T. Rodel, M. Dionisio and M. Beiner, *Polymer*, 2017, 111, 83-90.
- 22. G. Qi, W. Yang, D. Puglia, H. Wang, P. Xu, W. Dong, T. Zheng and P. Ma, *Mater. Des.*, 2020, **196**, 109150.