Supporting Information

Lead-free halide Cs₂MnCl₄:Cu⁺ as a new phosphor for efficient green light emission

Jingshan Hou,^a,* Jianghua Wu,^{a,b} Zhiyu Qin,^a Yongzheng Fang,^{a,*} Leijun Shen,^c Xin Qiao,^c Langping Dong,^a Ganghua Zhang,^a Yufeng Liu,^a Guoying Zhao,^a and Haijie Chen^{b,*}

^a. School of Materials Science and Engineering, Shanghai Institute of Technology,
Shanghai, 201418, China. * E-mail: houjingshan@sit.edu.cn (J.S. Hou);
fyz1003@sina.com (Y.F. Fang)

^b. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China. * E-mail: haijie.chen@dhu.edu.cn (H.J. Chen)

^c. Baotou Research Institute of Rare Earths, Baotou, 014030, China

Sample Labels	Mn	Cu	The ratio of Mn to Cu
	(mg/L)	(mg/L)	(mol)
Cs_2MnCl_4	219.343	0	/
$Cs_2Mn_{0.9}Cu_{0.1}Cl_4$	278.117	32.907	1:0.102

Table S1 Inductively coupled plasma optical emission spectrometer (ICP-OES)results of Cs2MnxCu1-xCl4.

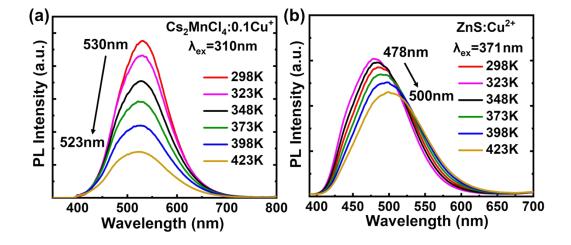


Fig. S1 :(a) Temperature-dependent PL spectra of $Cs_2MnCl_4:Cu^+$. (b) Temperaturedependent PL spectra of ZnS: Cu^{2+} .

The thermal stability performance of $Cs_2MnCl_4:0.1Cu^+$ together and the commercially used ZnS:Cu²⁺ were toke out (see Fig.R5). The PL intensity of $Cs_2MnCl_4:0.1Cu^+$ and ZnS:Cu²⁺ decreases with increasing temperature, and the intensity reduces to 30% and 75% of the original intensity, respectively. Generally, the commercial used ZnS:Cu²⁺ phosphor shows better thermal stability than that of $Cs_2MnCl_4:0.1Cu^+$. However, with increasing temperature, the ZnS:Cu²⁺ shows obvious red-shift emission (from 478 nm-500 nm), while the $Cs_2MnCl_4:0.1Cu^+$ shows slight blue-shift emission (from 530 nm-523 nm). This result suggests that $Cs_2MnCl_4:0.1Cu^+$ will be more helpful in helping the light source achieve stable light output rather than chromaticity drift when used in LEDs