Supporting Information for:

Fluorescent Phosphine Oxide-Containing Hyperbranched Polyesters:

Design, Synthesis and Its Application for Fe³⁺ Detection

Jian Sun^a, Yu-Lin Hong^a, Xiu-Qin Fang^a, Chang Wang^a, Cheng-Mei Liu^{a,*}

Figure. S1 HPLC elution curves of VBzBHPO, BHPA and MBHP.

Figure. S2 FT-IR spectra of VBzBHPO, (a) BHPA and HBP1 and (b) MBHP and BHP4.

Figure. S3 Mass spectrum of BHPA.

Figure. S4 Mass spectrum of MBHP.

Figure. S5 (a) ¹H and (b) ³¹P NMR spectra of MBHP.

Figure. S6 (a) ¹H and (b) ³¹P NMR spectra of HBPs.

Figure. S7 GPC elution curves of HBPs.

Figure. S8 Possible repeating units in the HBPs

Figure. S9 Theoretical calculations based on single polymer chains of HBPs with n = 1, 2 and 3 constitutional units at (TD-DFT) B3LYP/6-31 (d) level. HOMO: the highest occupied molecular orbital, LUMO: Lowest unoccupied molecular orbital, Egap: energy gap between LOMO and HUMO.

Dipole-dipole interactions Hydrogen bonds $n-\pi^*$ interactions $\pi-\pi^*$ interactions

Figure. S10 The possible interaction models in the clusters of HBPs

Figure. S11 (a) Transient photoluminescence decay curve and (b) absolute fluorescence quantum yield of pure HBP2. λ_{ex} = 350 nm.

The fluorescence lifetime of HBP2 was calculated as follows:

$$R(\tau) = A + B_1 \exp\left(-\frac{\tau}{\tau_1}\right) + B2exp^{[\tau_1]}(-\frac{\tau}{\tau_2})$$
$$\tau = (B_1\tau_1^2 + B_2\tau_2^2)/(B_1\tau_1 + B_2\tau_2)$$