Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

## Energy Transfer from Self-Trapped Excitons to Rare Earth in Cs<sub>2</sub>ZrCl<sub>6</sub> Perovskite Variant

Chen Fang,<sup>#a</sup> Jiakai Yang,<sup>#a</sup> Guojun Zhou,<sup>b</sup> Zhichao Zhang,<sup>c</sup> Yingjie Mao,<sup>a</sup> Xiangyan Yun,<sup>a</sup> Libo Liu,<sup>a</sup> Denghui Xu,<sup>a</sup> Xiong Li<sup>a</sup> and Jun Zhou\*<sup>a</sup>

**Corresponding Author** 

jzhou1204@btbu.edu.cn

<sup>&</sup>lt;sup>a</sup> Department of physics, Beijing Technology and Business University, Beijing 100048, China.

<sup>&</sup>lt;sup>b</sup> Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China

<sup>&</sup>lt;sup>c</sup> Department of Energy Chemistry and Materials Engineering, ShanXi Institute of Enegry, Jinzhong 030600, China



Fig. S1. (a) The CIE chromaticity diagram and digital photographs of  $Cs_2ZrCl_6$ . ( $\lambda_{ex} = 265$  nm and 339 nm corresponding to point 1 and 2, respectively). (b) The original photograph of  $Cs_2ZrCl_6$  excited by a 365 nm UV lamp.



Fig. S2. The PL spectra of Cs<sub>2</sub>HfCl<sub>6</sub> and Cs<sub>2</sub>SnCl<sub>6</sub>.



Fig. S3. Wavelength-dependent (a) PL and (b) PLE spectra of Cs<sub>2</sub>ZrCl<sub>6</sub>.



1440 mW/cm<sup>-2</sup>) at 300 K ( $\lambda_{ex}$  = 375 nm).



Fig. S5. The PLE spectra of  $Tb^{3+}$  monitored at 548 nm and 622 nm of  $Cs_2Zr_{0.9}Cl_6:0.1Tb^{3+}$ .



**Fig. S6.** The PLE spectra of STEs for  $Cs_2Zr_{1-x}Cl_6$ : $xTb^{3+}$ .



Fig. S7. The CIE chromaticity diagram and digital photograph of  $Cs_2Zr_{0.92}Cl_6$ :0.08Tb<sup>3+</sup>. ( $\lambda_{ex}$  = 339 nm).



**Fig. S8.** Normalized PL decay curves of  $Cs_2Zr_{1-x}Cl_6$ : $xTb^{3+}$  (x = 0, 0.05, 0.08, and 0.10) excited at 265 nm and monitored at 453 nm.



Fig. S9. Normalized temperature-dependent PLE spectra of Cs<sub>2</sub>ZrCl<sub>6</sub> monitored by STEs emission.