Supporting Information

Energy Transfer from Self-Trapped Excitons to Rare Earth in Cs$_2$ZrCl$_6$ Perovskite Variant

Chen Fang, Jiakai Yang, Guojun Zhou, Zhichao Zhang, Yingjie Mao, Xiangyan Yun, Libo Liu, Denghui Xu, Xiong Li and Jun Zhou*

a Department of physics, Beijing Technology and Business University, Beijing 100048, China.
b Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
c Department of Energy Chemistry and Materials Engineering, ShanXi Institute of Energy, Jinzhong 030600, China

Corresponding Author

jzhou1204@btbu.edu.cn
Fig. S1. (a) The CIE chromaticity diagram and digital photographs of Cs$_2$ZrCl$_6$. ($\lambda_{ex} = 265$ nm and 339 nm corresponding to point 1 and 2, respectively). (b) The original photograph of Cs$_2$ZrCl$_6$ excited by a 365 nm UV lamp.

Fig. S2. The PL spectra of Cs$_2$HfCl$_6$ and Cs$_2$SnCl$_6$.

52
Fig. S3. Wavelength-dependent (a) PL and (b) PLE spectra of Cs$_2$ZrCl$_6$.

Fig. S4. Dependence of the emission intensity at the defect band of Cs$_2$ZrCl$_6$ on the excitation intensity (108-1440 mW/cm2) at 300 K ($\lambda_{ex} = 375$ nm).
Fig. S5. The PLE spectra of Tb$^{3+}$ monitored at 548 nm and 622 nm of Cs$_2$Zr$_{0.9}$Cl$_6$:0.1Tb$^{3+}$.

Fig. S6. The PLE spectra of STEs for Cs$_2$Zr$_{1-x}$Cl$_6$:xTb$^{3+}$.
Fig. S7. The CIE chromaticity diagram and digital photograph of Cs$_2$Zr$_{0.92}$Cl$_{6}$:0.08Tb$^{3+}$. ($\lambda_{\text{ex}} = 339$ nm).

Fig. S8. Normalized PL decay curves of Cs$_2$Zr$_{1-x}$Cl$_6$:xTb$^{3+}$ ($x = 0$, 0.05, 0.08, and 0.10) excited at 265 nm and monitored at 453 nm.
Fig. S9. Normalized temperature-dependent PLE spectra of Cs$_2$ZrCl$_6$ monitored by STEs emission.