Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Thermally stable and strongly emitted CPL in Eu(*D*-facam)₃ hybrid solid with alkyl-ammonium salt

Ziying Li, Kazuki Nakamura, Norihisa Kobayashi*

Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

E-mail: <u>koban@faculty.chiba-u.jp</u>.

Table S1.	Some reports on soli	d state excellent CPL	materials in recent years
-----------	----------------------	-----------------------	---------------------------

Organic luminophores	$ g_{lum} $
A chiral difluoro-boron diketonate complexes (crystalline state) ¹	2.4×10 ⁻²
A (<i>R</i> , <i>R</i> , <i>R</i> , <i>R</i> , <i>R</i> , <i>R</i> , <i>R</i>)-naphthodioxepin (dioxepin-fusednaphthalene) octamer ²	2.2×10 ⁻³
The axial chiral triaryborane dyes ³	1.0-1.7×10 ⁻³
Lanthanide luminophores	
A chiral Eu(III) coordination polymers ⁴	9.2×10 ⁻²

Figure S2. Absorption (bottom) and CD (top) spectra of $Eu(D-facam)_3$ and $Eu(D-facam)_3$ -TMAOAc in KBr pellet.

Figure S3. UV-Visible Kubelka–Munk diffuse reflectance spectra of Eu(D-facam)₃ and Eu(D-facam)₃-TMAOAc in solid state.

Figure S4. Emission spectra of (a)Eu(*D*-facam)₃ and (b)Eu(*D*-facam)₃-TMAOAc before and after 24 hours 150 °C heat-treatment and cooling to room temperature.

Figure S5. Digital photographs of (a)Eu(D-facam)₃ and (b)Eu(D-facam)₃-TMAOAc with (right) and without (left) UV irradiation after 24 hours 200 °C heat-treatment and cooling to room temperature.

Figure S6. FT-IR spectra of Eu(*D*-facam)₃-TMAOAc before and after 24 hours 200 °C heat-treatment.

Figure S7. Emission spectra of $Eu(D-facam)_3$, $Eu(D-facam)_3$ -TMAOAc and mixed $[Eu(D-facam)_3]$: [TMAOAc]=1:1 in 1-butanol. The excitation wavelength was 350 nm.

Figure S8. Experimental (top) and calculated (bottom) MS spectra of (a) $[Eu(D-facam)_3 \cdot OAc]^-$, (b) $[Eu(D-facam)_3 \cdot TMA]^+$, (c) $[Eu(D-facam)_3 \cdot TMA \cdot 2OAc]^-$ and (d) $[Eu(D-facam)_3 \cdot 2TMA \cdot OAc]^+$.

Figure S9. Experimental (top) and calculated (bottom) MS spectra of (a) $[2Eu(D-facam)_3 \cdot OAc]^-$, (b) $[2Eu(D-facam)_3 \cdot TMA]^+$, (c) $[2Eu(D-facam)_3 \cdot TMA \cdot 2OAc]^-$ and (d) $[2Eu(D-facam)_3 \cdot 2TMA \cdot OAc]^+$.

Reference

- 1M. Louis, R. Sethy, J. Kumar, S. Katao, R. Guillot, T. Nakashima, C. Allain, T. Kawai and R. Métivier, *Chem. Sci.*, 2019, **10**, 843–847.
- 2K. Takaishi, T. Yamamoto, S. Hinoide and T. Ema, Chem. Eur. J., 2017, 23, 9249–9252.
- 3Z. Jiang, T. Gao, H. Liu, M. S. S. Shaibani and Z. Liu, *Dyes. Pigm.*, 2020, **175**, 108168.
- 4M. Tsurui, Y. Kitagawa, S. Shoji, H. Ohmagari, M. Hasegawa, M. Gon, K. Tanaka, M. Kobayashi, T. Taketsugu, K. Fushimi and Y. Hasegawa, *J. Phys. Chem. B*, 2022, **126**, 3799–3807.