Supporting Information

Regulating the photoluminescence and energy transfer process of $Sr_5(PO_4)_3Cl$: Eu^{2+} , Mn^{2+} via pressure-induced

phase transition

Ke Liu, a Ting Wen, *a Chen Li, a Yingying Ma, a Dequan Jiang, b Binbin Yue a and

Yonggang Wang *b

^aCenter for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China.

^bSchool of Materials Science and Engineering, Peking University, Beijing 100871, China.

*E-mail: ting.wen@hpstar.ac.cn; ygw@pku.edu.cn

Figure S1. Raman spectra of $Sr_5(PO_4)_3Cl$ at ambient condition and after releasing pressure.

Figure S2. *in-situ* HP PL of Sr₅(PO₄)₃Cl: 0.02Eu²⁺.

Figure S3. (a) The FWHM changes of Eu^{2+} for $Sr_5(PO_4)_3Cl$: 0.02 Eu^{2+} , xMn^{2+} (x= 0 and 0.04) under different hydrostatic pressures. The emission wavelength (b) and FWHM (c) changes of Mn^{2+} for $Sr_5(PO_4)_3Cl$: 0.02 Eu^{2+} , 0.04 Mn^{2+} .

Figure S4. PL spectra of $Sr_5(PO_4)_3Cl:0.02Eu^{2+}$, 0.04Mn²⁺ at 0.6 GPa and after releasing pressure.

Figure S5. Decay time of $Sr_5(PO_4)_3C1$: $0.02Eu^{2+}$ under different pressure.

Figure S6. Decay time of $Sr_5(PO_4)_3Cl$: 0.02Eu²⁺ with and without silicon oil at ambient condition.

Figure S7. The emission spectra of $Sr_5(PO_4)_3Cl: 0.005Eu^{3+}$ used as *in-situ* HP Eu³⁺ probe experiments.