Supplementary material for

Phosphorescent iridium(III) complexes containing Ir-S-C-S structures for selective detection

of Cu²⁺ ions in solution and nanofibrous film

Yi-Chuan Huang^a, Xi Chu^a, Shi-Sheng Zhao^a, Wen-Hao Li^a, Hong-Yan Li^{a*}, Wei Xue^{a, b*}

^a School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin

300130, China

^b Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy

Saving, Tianjin Key Laboratory of Chemical Process Safety

^{*} Corresponding authors.

E-mail address: hyli@hebut.edu.cn (H.-Y. Li); weixue@hebut.edu.cn (W. Xue)

Contents

	_
Index	Page
Experimental Section	S3
Fig. S1-S9. ¹ H NMR and ¹³ C NMR spectra of L_1 - L_3 and Ir1–Ir3 .	S8
Fig. S10. Cyclic voltammograms for complexes Ir1–Ir3 in CH ₂ Cl ₂ and MeCN solution	S12
at room temperature.	
Fig. S11. UV-vis spectra of Ir1 (a) Ir2 (b) and Ir3 (c) ($c = 2.0 \times 10^{-5}$ M) in the presence	S13
of various metal ions (2.0 equiv.) in MeCN. Ag ⁺ , Ca ²⁺ , Cd ²⁺ , Co ²⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , K ⁺ ,	
Mg ²⁺ , Na ⁺ , Ni ²⁺ , Pb ²⁺ , Zn ²⁺ and Cu ²⁺ are added, respectively. Inset: the photos of before	
and after the Cu ²⁺ added in acetonitrile solution under chamber light.	
Fig. S12. Emission spectra of Ir1 (a), Ir2 (b) and Ir3 (c) $(5.0 \times 10^{-4} \text{ M})$ in the presence	
of 2.0 equiv. metal ions (Ag ⁺ , Ca ²⁺ , Cd ²⁺ , Co ²⁺ , Cr ³⁺ , Fe ²⁺ , Fe ³⁺ , K ⁺ , Mg ²⁺ , Na ⁺ , Ni ²⁺ ,	S14
Pb ²⁺ , Zn ²⁺ and Cu ²⁺) in acetonitrile solution.	
Fig. S13. Photo of 2.0 equivalent metal ions $(Ag^+, Ca^{2+}, Cd^{2+}, Co^{2+}, Cr^{3+}, Fe^{2+}, Fe^{3+}, K^+,$	
Mg^{2+} , Na^+ , Ni^{2+} , Pb^{2+} , Zn^{2+} and Cu^{2+}) added into the acetonitrile solution of Ir2 (a) and	S15
Ir3 (b) under the irradiation of 365nm ultraviolet lamp.	
Fig. S14. The emission spectra of Ir2, Ir2 + Cu^{2+} (2.0 equiv.) and Ir2 + Cu^{2+} (2.0 equiv.)	S15
+ Na ₂ EDTA (2.0 equiv.) in acetonitrile solution.	515
Fig. S15. Comparison chart in ¹ H NMR (DMSO- d_6) spectra of Ir1 upon addition of 0,	S16
$2.0 \text{ equiv. of } \text{Cu}^{2+}.$	
Fig. S16. The molecular structure of the complex $Ir2$ and changes in ¹ H NMR (CD ₃ CN)	S16
spectra of $\mathbf{Ir2}$ upon addition of 0, 0.5, 1.0 and 2.0 equiv. of \mathbf{Cu}^{2+} .	
Fig. S17. The singlet and triplet DFT calculation summary results of $[(L_2)_2 lr(MeCN)_2]^+$.	S17
Fig. S18. Linear correlation between the concentration of Cu^{2+} ions (0–10.0 μ M) and	S17
emission intensities of Ir1(a)/Ir2(b)/Ir3(c) at their emission peaks.	~
Table S1. Crystallographic data for complexes Ir1 and Ir3.	S18
Table S2. Selected bond distances (A) and angles (•) for complexes Ir1 and Ir3.	S19
Table S3. The frontier orbital energy and electron density distribution for Ir1-Ir3.	S19
Table S4. Selected transitions from TD-DFT calculations of Ir1 in the S1 state.	S20
Table S5. Selected transitions from TD-DFT calculations of Ir2 in the S1 state.	S20
Table S6. Selected transitions from TD-DFT calculations of Ir3 in the S1 state.	S20
Table S7. Phosphorescent emissions for the experimental reported Ir(III) complexes in	S20
acetonitrile media determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory on	
the basis of the lowest triplet state geometry together with the experimental values.	
Table S8. Phosphorescent emissions for $[(L_2)_2 Ir(MeCN)_2]^+$ determined at the TD-	S20
B3LYP/6-31G(d)-LANL2DZ level of theory on the basis of the lowest triplet state	
geometry.	
Table S9. The reported chemical sensors for detection of Cu ²⁺ ions based on iridium(III)	S21
complexes.	
References	S22

1. Experimental Section

1.1 Materials and Instruments

All commercial regents were used without further purification unless otherwise indicated. IrCl₃·nH₂O was purchased from Kunming Borui Metal Materials Co. Ltd. Boric acid derivatives and 2-bromopyridine-5-carbaldehyde were purchased from Aladdin Reagents. Cu(NO₃)₂·3H₂O, AgNO₃, KNO₃, NaNO₃, Ca(NO₃)₂·4H₂O, Cd(NO₃)₂·4H₂O, Cr(NO₃)₃·9H₂O, Co(NO₃)₂·6H₂O, Mg(NO₃)₂·6H₂O, Pb(NO₃)₂, Fe(NO₃)₂, Fe(NO₃)₃, Zn(NO₃)₂·6H₂O and Ni(NO₃)₂·6H₂O were purchased from Tianjin Kermel Chemical Reagent Company.

¹H and ¹³C NMR spectra were measured on a Bruker AM 400 spectrometer. Deuterated reagents are CDCl₃ and DMSO-d₆, chemical shift unit is ppm, multiplicity is expressed in s (singlet), d (doublet), t (triplet), and m (multiplet). The mass spectra (MS) were obtained using ESI-MS (Agilent 6520 Q-TOF LC/MS). The absorption spectra and photoluminescence spectra were recorded on UV-2700 spectrophotometer and Hitachi F-2700 photoluminescence spectrophotometer, respectively. The phosphorescence lifetimes of the complexes were measured using Edinburgh Instruments FLS920P fluorescence spectrometer in oxygen-free dichloromethane/acetonitrile solution at room temperature, and the data was fitted with Origin software.

The luminescence quantum efficiencies were calculated by comparison of the emission intensities (integrated areas) of a standard sample $(Ir(ppy)_3)$ and the unknown sample according to the equation ^{1, 2}.

$$\boldsymbol{\varPhi}_{\text{unk}} = \boldsymbol{\varPhi}_{\text{std}} (\frac{I_{\text{unk}}}{I_{\text{std}}}) (\frac{A_{\text{std}}}{A_{\text{unk}}}) (\frac{\eta_{\text{unk}}}{\eta_{\text{std}}})^2$$

Where Φ_{unk} and Φ_{std} are the luminescence quantum yield of the unknown sample and Ir(ppy)₃, respectivlely. The I_{unk} and I_{std} are the integrated emission intensities of the unknown sample and Ir(ppy)₃ solution, respectively. The A_{unk} and A_{std} are the absorbance of the unknown sample and Ir(ppy)₃ solution at their excitation wavelengths, respectively. The η_{unk} and η_{std} terms represent the refractive indices of the corresponding solvents (pure solvents were assumed). The Φ_{std} of Ir(ppy)₃ measured in oxygen-free dichloromethane solution at room temperature has been revalued to be 0.97 (error: ± 10 %) ^{3,4}.

1.2 Synthesis of Ligands and Complexes

Synthesis of cyclometalated ligands L_1-L_3 .

6-phenylnicotinaldehyde (L₁): Under nitrogen atmosphere, a mixture of phenylboronic acid (1.83)15 mmol), 2-bromopyridine-5-carbaldehyde (1.86)10 g, g, mmol), tetrakis(triphenylphosphine)palladium (0.17 g, 0.15 mmol) and sodium carbonate (4.25 g, 40 mmol) in THF and water (80 mL, 1:1, V/V) were refluxed for 24 h. After cooling to room temperature, the solvent was removed, and the obtained residue was purified by silica gel column chromatography (CH₂Cl₂/petroleum ether 1:2 (v/v)) to obtain white power with 1.54g. Yield: 84.25%. ¹H NMR (400 MHz, CDCl₃) δ 10.28 – 10.06 (m, 1H), 9.14 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 7.2 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.52 (d, *J* = 5.8 Hz, 3H).

6-(4-(trifluoromethyl)phenyl)nicotinaldehyde) (L₂): The synthesis procedure of L2 is similar to that of L₁, except that phenylboronic acid is replaced with 4-trifluoromethylphenylboronic acid. White powder was obtained with 2.06 g. Yield: 82.17%.¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 9.17 (s, 1H), 8.28 (dd, *J* = 8.2, 1.9 Hz, 1H), 8.21 (d, *J* = 8.1 Hz, 2H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H).

6-(4-methoxyphenyl)nicotinaldehyde) (L₃): Except for phenylboronic acid with 4methoxyphenylboronic acid, the synthesis of L₃ is similar to that of L₁. White powder was obtained with 1.84 g. Yield: 86.21%. ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 9.08 (d, *J* = 2.2 Hz, 1H), 8.18 (dd, *J* = 8.3, 2.2 Hz, 1H), 8.07 (d, *J* = 8.9 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 3H).

Synthesis of Ir(III) complexes. A mixture of $IrCl_3 \cdot nH_2O$ (0.18 g, 0.50 mmol) and three cyclometalated ligands (L₁: 0.20 g, 1.1 mmol; L₂: 0.28 g, 1.1 mmol; L₃: 0.23 g, 1.1 mmol) in 2ethoxyethanol and water (16 mL, 3: 1, v/v) were heated to 140 °C and refluxed for 24 h under nitrogen atmosphere. After cooling to room temperature and adding water, the precipitated chlorobridged dimer was filtered without further purification. Then, the concentrated water solution of ancillary ligand salt NaCzdtc (1.2 mmol) was stirred with chloro-bridged dimer (1.0 mmol) in dichloromethane/methanol (1:1, v/v) at room temperature for 10 minutes. Then, the solution was concentrated, and the resulting residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH 1: 1, v/v).

(L₁)₂Ir(Czdtc) (**Ir1**): red powder, 0.19 g, yield: 47.2%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.08 (s, 2H), 9.94 (s, 2H), 9.21 (d, *J* = 7.6 Hz, 2H), 8.44 (dd, *J* = 27.1, 8.4 Hz, 4H), 8.21 (d, 2H), 7.97 (d,

J = 7.6 Hz, 2H), 7.53 – 7.42 (m, 4H), 6.93 (t, J = 7.4 Hz, 2H), 6.82 (t, J = 7.1 Hz, 2H), 6.33 (d, J = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 219.36, 188.42, 173.91, 158.11, 156.01, 142.35, 139.57, 135.55, 131.72, 131.08, 130.73, 127.26, 126.90, 126.39, 124.84, 122.11, 119.61, 118.92, 118.15. ESI-MS calcd for [C₃₇H₂₄IrN₃NaO₂S₂]⁺ (822.0837); found 822.0841 [M + Na]⁺.

 $(L_2)_2$ Ir(Czdtc) (**Ir2**): red powder, 0.21 g, yield: 45.4%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.14 (s, 2H), 10.05 (s, 2H), 9.25 (d, *J* = 9.2 Hz, 2H), 8.68 (d, *J* = 8.5 Hz, 2H), 8.55 (d, *J* = 8.1 Hz, 2H), 8.23 (d, *J* = 7.8 Hz, 4H), 7.56 – 7.43 (m, 4H), 7.29 (d, *J* = 8.3 Hz, 2H), 6.49 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 218.83, 188.12, 172.37, 157.25, 155.57, 145.85, 139.62, 136.60, 131.89, 131.68, 131.58, 127.74 (q, *J* = 3.9 Hz), 127.51, 127.20, 126.19, 125.33, 120.06, 119.83, 119.38 (q, *J* = 3.8 Hz), 118.30. ESI-MS calcd for [C₃₉H₂₃F₆IrN₃O₂S₂]⁺ (936.0765); found 936.0760 [M + H]⁺.

 $(L_3)_2$ Ir(Czdtc) (**Ir3**): red powder, 0.18 g, yield: 42.6%.¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 2H), 9.92 (d, J = 1.9 Hz, 2H), 9.41 – 9.31 (m, 2H), 8.18 (dd, J = 8.5, 2.0 Hz, 2H), 8.00 – 7.93 (m, 2H), 7.90 (d, J = 8.6 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 7.43 – 7.36 (m, 4H), 6.55 (dd, J = 8.7, 2.5 Hz, 2H), 5.94 (d, J = 2.5 Hz, 2H), 3.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 219.38, 188.34, 173.29, 161.60, 160.63, 156.17, 139.55, 135.43, 135.17, 129.61, 128.27, 127.25, 126.89, 124.83, 119.61, 118.11, 118.08, 116.37, 108.38, 54.83. ESI-MS calcd for [C₃₉H₂₈IrN₃NaO₄S₂]⁺ (882.1048); found 882. 1060 [M + Na]⁺.

1.3 X-ray Crystallography

X-ray diffraction data were collected with Siemens (Bruker) Smart CCD diffractometer using monochromatic Mo K α radiation (λ =0.7103Å) at 113 K. Parameters data were collected with Smart software ⁵ and refined with SAINT. The structure was solved by direct methods using the program SHELXL-2018 ⁶. The positions of metal atoms and their first coordination spheres were located from direct-methods E-maps; other non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles and, during the final cycles, refined anisotropically. Hydrogen atoms were placed in calculated position and refined as riding atoms with a uniform value of Uiso.

1.4 Cyclic Voltammetry

Electrochemical measurements were performed with CHI 760E electrochemical workstation, with a polished Pt plate as the working electrode, platinum thread as the counter electrode and AgNO₃ (0.010 M in CH₃CN)-Ag as the reference electrode, tetrabutylammonium

hexafluorophosphate (0.10 M) was used as the electrolyte, using ferrocene (Fc⁺/Fc) as the internal standard, and the scan rate is $100 \text{ mV} \cdot \text{s}^{-1}$.

1.5 Computational Details

Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations using B3LYP ⁷⁻⁹ functional were performed. The basis set used for C, H, N, O, S and F atoms was 6-31G (d, p) while the LanL2DZ basis set was employed for Ir atoms. Optimization and vibration data confirm that the structure is extremely small on the corresponding potential energy surface. The solvent effect of dichloromethane was taken into consideration using conductor like polarizable continuum model (C-PCM) ^{10, 11}. All these calculations were performed with Gaussian 09 ¹².

1.6 Copper(II) Titration and Selective Experiments

The stock solutions (2.0 mM) of complexes **Ir1–Ir3** were prepared in acetonitrile and then diluted with acetonitrile to 0.5 mM and 20 μ M for titration and selective experiments. Stock solutions (0.05 M) of Cu²⁺ ion and other metal ions (Ag⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe³⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺) were prepared in deionized water. Cu²⁺ ion (0–2.0 equiv.) was adding incrementally with a micropipet to the solution of **Ir1–Ir3** in quartz cuvette to perform the titration experiments. The cation-competition experiments were performed by adding 2.0 equiv. Cu²⁺ ion into the mixture solution of Ir(III) complexes and the other metal ions. All the experiments were measured after standing for 5 minutes.

1.7 Determination of detection limit

The detection limit is calculated based on phosphorescence titration. The phosphorescence emission spectra of the complexes **Ir1–Ir3** were measured 10 times, and the standard deviation of the blank measurement was obtained. Plot the ratio of emission intensity to different ion concentrations to obtain the slope. The detection limit is calculated by the following formula ^{13, 14}.

Detection limit
$$=\frac{3\sigma}{k}$$

Where σ is the standard deviation of the blank measurement, and k is the slope of the ratio of emission intensity to ion concentration.

1.8 Preparation of iridium complexes-composite nanofibrous film by electrospinning

Polyurethane (5.0 g) is dissolved in a mixed solution of tetrahydrofuran (10.0 g) and N,N^{2} dimethylformamide (10 g), heated and stirred at 60 °C for 12 hours to obtain a mixed fluid stand for use. After iridium complexes (1.0 mg) were dissolved in acetonitrile solution (1.0 g), the abovementioned fluid solution (9.0 g) were added thereto, and then the mixture were stirred at room temperature for 3 h. The precursor solution was loaded into a 5-mL gauge syringe with a push rate of 5 mL/h by peristaltic pump (Lead Fluid) under a high voltage of 12 kV to prepare nanofibers.

1.9 Fluorescence imaging

Fluorescence imaging were performed on Olympus IX83 Inverted Fluorescence Microscope. The luminescent signals were detected by the system of the confocal microscope with green channel (510-550 nm), $\lambda ex = 460-495$ nm, red channel (575-625 nm), $\lambda ex = 530-550$ nm.

1.10 Real water samples

Reagent water samples including tap, drinking and lake water from Hebei University of Technology, were filtered with a 0.2 mm filter membrane to remove large particles before use. Stock solutions of complexes Ir1–Ir3 were prepared as described in titration experiment. Stock solutions (5.0 mM) of Cu²⁺ were prepared in various actual water samples and were diluted to different concentration using actual samples. 2.00 μ M and 6.00 μ M of Cu²⁺ ions were added to acetonitrile solution of complexes Ir1–Ir3, respectively, phosphorescence emission intensities were measured after standing for 5 minutes.

Fig. S2. ¹H NMR spectrum of L₂ in CDCl₃ at 400 MHz at room temperature.

Fig. S4. ¹H NMR spectrum of Ir1 in DMSO-*d*₆ at 400 MHz at room temperature.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Fig. S6. ¹H NMR spectrum of Ir2 in DMSO- d_6 at 400 MHz at room temperature.

Fig. S8. ¹H NMR spectrum of Ir3 in CDCl₃ at 400 MHz at room temperature.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S9. ¹³C NMR spectrum of Ir3 in CDCl₃ at 101 MHz at room temperature.

Fig. S10. Cyclic voltammograms for complexes Ir1-Ir3 in CH_2Cl_2 and MeCN solution at room temperature.

Fig. S11. UV-vis spectra of **Ir1**(a) **Ir2**(b) and **Ir3**(c) ($c = 2.0 \times 10^{-5}$ M) in the presence of various metal ions (2.0 equiv.) in MeCN. Ag⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe²⁺, Fe³⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺ and Cu²⁺ are added, respectively. Inset: the photos of before and after the Cu²⁺ added in acetonitrile solution under chamber light.

Fig. S12. Emission spectra of **Ir1**(a), **Ir2** (b) and **Ir3** (c) $(5.0 \times 10^{-4} \text{ M})$ in the presence of 2.0 equiv. metal ions (Ag⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe²⁺, Fe³⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺ and Cu²⁺) in acetonitrile solution.

Fig. S13. Photos of 2.0 equivalent metal ions (Ag⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Fe²⁺, Fe³⁺, K⁺, Cu²⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺) added into the acetonitrile solution of **Ir1**(a), **Ir2**(b) and **Ir3**(c) under the irradiation of 365 nm ultraviolet lamp.

Fig. S14. The emission spectra of Ir2, Ir2 + Cu^{2+} (2.0 equiv.) and Ir2 + Cu^{2+} (2.0 equiv.) + Na₂EDTA (2.0 equiv.) in acetonitrile solution.

Fig. S15. Comparison chart in ¹H NMR (DMSO- d_6) spectra of **Ir2** upon addition of 0, 2.0 equiv. of Cu²⁺.

Fig. S16. The molecular structure of the complex Ir2 and changes in ¹H NMR (CD₃CN) spectra of Ir2 upon addition of 0, 0.5, 1.0 and 2.0 equiv. of Cu^{2+} .

pop-tfm	ppychomecn1-sol		pop-tfm	ppychomecn3-sol	
File Name	pop-tfmppychomecn1-sol		File Name	pop-tfmppychomecn3-sol	
File Type	. fch		File Type	. fch	
Calculation Type	SP		Calculation Type	SP	
Calculation Method	RB3LYP		Calculation Method	UB3LYP	
Basis Set	GENECP		Basis Set	GENECP	
Charge	1		Charge	1	
Spin	Singlet		Spin	Triplet	
Total Energy	-2228. 41928162	a. u.	Total Energy	-2228. 33214591	a. u.
BES Gradient Norm	0.00000000	a. u.	RES Gradient Norm	0.0000000	a. u.
Inaginary Freq			Inaginary Freq		
Dipole Noment	88. 7918	Debye	Dipole Moment	87.6723	Debye
Point Group			Point Group		

Fig. S17. The singlet and triplet DFT calculation summary results of $[(L_2)_2 Ir(MeCN)_2]^+$.

Fig. S18. Linear correlation between the concentration of Cu^{2+} ions (0–10.0 μ M) and emission intensities of Ir1(a)/Ir2(b)/Ir3(c) at their emission peaks.

	Ir1	Ir3
Formula	$C_{37}H_{24}IrN_3O_2S_2$	$C_{39}H_{28}IrN_3O_4S_2$
W	798.91	858.960
T (K)	123.15	113.15
Wavelength (Å)	798.91	858.96
Cryst syst	monoclinic	monoclinic
Space group	P2(1)/c	Cc
a (Å)	14.3172(7)	16.0172(6)
$b(\mathbf{A})$	18.2065(7)	25.5289(7)
$c(\dot{A})$	12.7031(6)	9.3149(3)
α (deg)	90	90
β (deg)	115.084(6)	103.618(4)
γ (deg)	90	90
$V(Å^3)$	2999.0(3)	3701.8(2)
Ζ	4	4
ρ_{calcd} (g/cm ³)	1.769	1.541
μ (Mo K α) (mm ⁻¹)	4.632	3.762
F(000)	1568.0	1696.0
Range of transm factors (deg)	3.14-50.032	3.064 - 52.742
Reflns collected	28307	14826
Unique	5295	7012
GOF on F^2	1.025	1.034
R_{I}^{a} , wR_{2}^{b} (I>2 σ (I))	0.0343, 0.0748	0.0381, 0.0755
R_1^a , wR_2^b (all data)	0.0461, 0.0805	0.0421, 0.0788

Table S1 Crystallographic data for complexes Ir1 and Ir3.

Ir1					
Ir(1)-S(1)	2.45(13)	Ir(1)-S(2)	2.44(14)	Ir(1)-N(1)	2.04(4)
Ir(1)-N(2)	2.04(4)	Ir(1)-C(1)	2.02(5)	Ir(1)-C(2)	2.02(5)
S(1)-Ir(1)-S(2)	70.9(4)	N(1)-Ir(1)-S(1)	88.6(1)	N(1)-Ir(1)-S(2)	97.7(1)
N(1)-Ir(1)-N(2)	172.4(2)	N(2)-Ir(1)-S(1)	97.1(1)	N(2)-Ir(1)-S(3)	89.0(1)
C(1)-Ir(1)-S(1)	101.0(2)	C(1)-Ir(1)-S(2)	171.8(2)	C(1)-Ir(1)-N(1)	80.3(2)
C(1)-Ir(1)-N(2)	93.6(2)	C(2)-Ir(1)-S(1)	169.5(1)	C(2)-Ir(1)-S(2)	98.8(1)
C(2)-Ir(1)-N(1)	95.2(2)	C(2)-Ir(1)-N(2)	80.1(2)	C (1)-Ir(1)-C(2)	89.3(2)
Ir3					
Ir(1)-S(1)	2.47(4)	Ir(1)-S(2)	2.43(4)	Ir(1)-N(1)	2.04(2)
Ir(1)-N(2)	2.06(2)	Ir(1)-C(1)	1.96(2)	Ir(1)-C(2)	2.07(1)
S(2)-Ir(1)-S(1)	70.8(10)	N(1)-Ir(1)-S(1)	89.5(4)	N(1)-Ir(1)-S(2)	97.1(5)
N(1)-Ir(1)-N(2)	170.4(4)	N(1)-Ir(1)-C(2)	93.6(6)	N(2)-Ir(1)-S(1)	98.0(4)
N(2)-Ir(1)-S(2)	91.2(4)	N(2)-Ir(1)-C(2)	80.1(6)	C(1)-Ir(1)-S(1)	99.9(4)
C(1)-Ir(1)-S(2)	170.4(4)	C(1)-Ir(1)-N(1)	80.0(7)	C(1)-Ir(1)-N(2)	92.7(6)
C(1)-Ir(1)-C(2)	90.6(4)	N(2)-Ir(1)-S(1)	169.4(4)	C(2)-Ir(1)-S(2)	98.7(4)

Table S2 Selected bond distances (Å) and angles ($^{\circ}$) for complexes Ir1 and Ir3.

 Table S3. The frontier orbital energy and electron density distribution for Ir1–Ir3.

Complex	Orbital	Energy (eV)	$E_{\rm g}({\rm eV})$			Compositi	on %	
		(Calculated)	(Čalculat	-CF ₃ /	phenyl	pyridine	Ir	Neutral
			ed)	–OMe	_	ring		ligands
	HOMO-2	-6.05		-	5.27	4.72	42.44	47.57
	HOMO-1	-5.96		-	2.68	3.78	24.19	69.35
Ir1	HOMO	-5.54	3.10	-	39.21	7.40	45.95	7.26
	LUMO	-2.44		-	17.96	78.38	1.91	1.75
	LUMO+1	-2.37		-	15.62	79.75	2.64	2.00
	LUMO+2	-1.99		-	0.78	2.47	2.89	93.85
	HOMO-2	-6.15		0.13	4.04	3.55	31.81	60.47
	HOMO-1	-6.02		0.03	1.84	2.81	17.87	77.45
Ir2	HOMO	-5.77	3.16	0.33	37.65	6.81	46.93	8.29
	LUMO	-2.62		1.81	20.26	73.98	1.75	1.69
	LUMO+1	-2.53		1.74	17.66	76.33	2.46	1.80
	LUMO+2	-2.05		0.01	0.94	2.60	2.89	93.57
	HOMO-2	-5.95		5.43	13.91	7.63	12.70	60.33
	HOMO-1	-5.85		14.72	35.58	18.70	13.29	17.60
Ir3	HOMO	-5.49	3.18	3.75	40.17	12.53	37.93	5.62
	LUMO	-2.31		2.97	15.86	78.08	1.43	1.66
	LUMO+1	-2.24		2.44	14.49	78.81	2.30	1.95
	LUMO+2	-1.97		0.01	1.01	2.46	2.88	93.64

$\lambda_{abs}(nm)$ (Calcd)	$\lambda_{abs}(nm)$ (Exptl)	Oscillator Strength	Major transition (s)	Character
499	496	0.1161	HOMO→LUMO (96%)	MLCT/LLCT/LC
377	372	0.1959	H-1→L+2 (82%)	MLCT/ILCT
319	314	0.0789	H-4→LUMO (28%),	LLCT/LC
			H-3→LUMO (47%)	
306	286	0.2209	H-9→LUMO (73%)	LLCT/LC
	231			

Table S4. Selected transitions from TD-DFT calculations of Ir1 in the S1 state.

Table S5. Selected transitions from TD-DFT calculations of Ir2 in the S1 state.

$\lambda_{abs}(nm)$	$\lambda_{abs}(nm)$	Oscillator	Major transition (s)	Character
(Calcd)	(Exptl)	Strength		
490	490	0.1052	HOMO→LUMO (98%)	MLCT/LLCT
375	363	0.3173	H-1→L+2 (73%)	MLCT/ILCT
306		0.1049	H-9→L+1 (68%)	LLCT/LC
297	287	0.024	H-4→L+3 (80%)	LLCT
242	231	0.054	H-5→L+5 (71%)	MLCT/LLCT

Table S6. Selected transitions from TD-DFT calculations of Ir3 in the S1 state.

$\lambda_{abs}(nm)$	$\lambda_{abs}(nm)$ (Exptl)	Oscillator Strength	Major transition (s)	Character
<u>(Calea)</u>	<u>(Expu)</u> 475	0.1231		
280	ч 75	0.1251	$H_{2} \rightarrow L_{+2} (25\%)$	
380	_	0.3172	$\Pi - 2 \rightarrow L + 2 (23\%),$	LLCI/LC
			$H-1\rightarrow L+2(51\%)$	
365	352	0.0991	HOMO→L+3(73%)	MLCT/LLCT
305	285	0.0022	HOMO→L+5(91%)	MLCT/LLCT
237	231	0.0401	H-16→L+1(71%)	LC
			· · · · · · · · · · · · · · · · · · ·	

 Table S7. Phosphorescent emissions for the experimental presented Ir(III) complexes in MeCN

 media determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory on the basis of the lowest

triplet state g	geometry.
-----------------	-----------

Complex	State	AE (eV)	E (eV)	λ(nm)	Major transition (s)	Description
Ir1	T_1	2.18	2.12	584	HOMO→L+1 (91%)	³ MLCT/ ³ LLCT
Ir2	T_1	2.20	2.17	571	HOMO→L+1 (90%)	³ MLCT/ ³ LLCT
Ir3	T_1	2.23	2.28	543	H-1 \rightarrow L+1(24%) HOMO \rightarrow L+1 (51%)	³ LLCT/ ³ MLCT

Table S8. Phosphorescent emissions for $[(L_2)_2 Ir(MeCN)_2]^+$ determined at the TD-B3LYP/6-31G(d)-LANL2DZ level of theory on the basis of the lowest triplet state geometry.

	$E(S_1)$	$E(T_1)$	$\triangle E$	AE (eV)	λ(nm)
$[(L_2)_2 Ir(MeCN)_2]^+$	-2228.4193	-2228.3321	0.0872	2.36	525

Sample	Туре	Limit of detection (M)	Reference
115	turn-off	_	Inorg. Chem. Commun., 2012, 16, 1–3.
2^{16}	turn-off	_	Bull. Korean Chem. Soc., 2013, 34, 653–656.
317	turn-off	_	<i>Tetrahedron Lett.</i> , 2013, <i>54</i> , 779–782.
418	turn-off	10-8	Plos one, 2014, 9, e99930.
519	turn-off	6.5×10^{-5}	J. Lumin., 2016, 177, 299-305.
6^{20}	turn-off	$7.6 imes 10^{-8}$	J. Organomet. Chem., 2017, 853, 42-48.
7^{21}	turn-off	2.2×10^{-8}	Dyes Pigm., 2019, 161, 252-260.
822	turn-off	2.7×10^{-7}	Dyes Pigm., 2021, 186, 109016.
923	turn-off	1.1×10^{-7}	Organometallics, 2022, 41, 706-715.
1024	turn-on	_	Analyst 2013, 138, 894-900.
Ir1	turn-on	3.31×10 ⁻⁷	This paper
Ir2	turn-on	2.13×10 ⁻⁷	This paper
Ir3	turn-on	1.74×10^{-7}	This paper

Table S9. The reported chemical sensors for detection of Cu^{2+} ions based on iridium(III) complexes.

References

- Frank, M.; Nieger, M.; Vögtle, F.; Belser, P.; von Zelewsky, A.; De Cola, L.; Balzani, V.; Barigelletti, F.; Flamigni, L. Dinuclear Ru(II) and/or Os(II) complexes of bis-bipyridine bridging ligands containing adamantane spacers: synthesis, luminescence properties, intercomponent energy and electron transfer processes, *Inorg. Chim. Acta.* 1996, 242, 281-291. https://doi.org/10.1016/0020-1693(95)04878-2.
- Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, *Coord. Chem. Rev.* 1988, *84*, 85-277. <u>https://doi.org/10.1016/0010-8545(88)80032-8.</u>
- Seo, H. J.; Song, M.; Jin, S. H.; Choi, J. H.; Yun, S. J.; Kim, Y. I. Blue phosphorescent iridium(iii) complexes containing carbazole-functionalized phenylpyridine for organic lightemitting diodes: energy transfer from carbazolyl moieties to iridium(iii) cores, *RSC Adv.* 2011, *1*, 755. <u>https://doi.org/10.1039/C1RA00140J.</u>
- King, K. A.; Spellane, P. J.; Watts, R. J. Excited-state properties of a triply ortho-metalated iridium(III) complex, J. Am. Chem. Soc. 1985, 107, 1431-1432. https://doi.org/10.1021/ja00291a064.
- 5. Sheldrick G. M. A short history of SHELX, *Acta Crystallogr., ect. A* 2008, *64*, 112-122. https://doi.org/10.1107/S0108767307043930.
- 6. Sheldrick G. M. SHELXTL-97, Universität of Göttingen, Göttingen, Germany. 1997.
- Miehlich B.; Savin A.; Stoll H.; Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr, *Chem. Phys. Lett.* 1989, 157, 200-206. <u>https://doi.org/10.1016/0009-2614(89)87234-3.</u>
- Becke A. D. Density-functional thermochemistry. III. the role of exact exchange, J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1007/s002149900065.
- Cossi M.; Rega N.; Scalmani G.; Barone V.; Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, *J. Comput. Chem.* 2003, 24, 669-681. <u>https://doi.org/10.1002/jcc.10189.</u>
- Tomasi J.; Mennucci B.; Cammi R. Quantum mechanical continuum solvation models, *Chem. Rev.* 2005, *105*, 2999-3094. <u>https://doi.org/10.1021/cr9904009.</u>
- Lee C. T.; Yang W. T.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Phys. Rev. B* 1988, *37*, 785-789. <u>https://doi.org/10.1103/physrevb.37.785.</u>
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A., Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,

P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, **2010**.

- Datta, B. K.; Thiyagarajan, D.; Ramesh, A. A sole multi-analyte receptor responds with three distinct fluorescence signals: traffic signal like sensing of Al³⁺, Zn²⁺ and F⁻, *Dalton Trans.* 2015, 44, 13093-13099. <u>https://doi.org/10.1039/C5DT01468A.</u>
- Ponram, M.; Balijapalli, U.; Sambath, B.; Kulathu Iyer, S.; Kakaraparthi, K.; Thota, G.; Bakthavachalam, V.; Cingaram, R.; Sung-Ho, J.; Natesan Sundaramurthy, K. Inkjet-printed phosphorescent Iridium(III) complex based paper sensor for highly selective detection of Hg²⁺, *Dyes Pigm.* 2019, *163*,176-182. https://doi.org/10.1016/j.dyepig.2018.11.054.
- Yang, H.; Zhu, Y.; Li, L.; Zhou, Z.; Yang, S., A phosphorescent chemosensor for Cu²⁺ based on cationic iridium(III) complexes. *Inorganic Chemistry Communications* 2012, *16*, 1-3. <u>https://doi.org/10.1016/j.inoche.2011.11.006.</u>
- Kim, H. B.; Li, Y.; Hyun, M. H., Phosphorescent chemosensor based on iridium(III) complex for the selective detection of Cu(II) ion in aqueous acetonitrile. *Bull. Korean Chem. Soc.*, 2013, 34 (2), 653-656. <u>https://doi.org/10.5012/bkcs.2013.34.2.653.</u>
- Lu, F.; Yamamura, M.; Nabeshima, T., Luminescent biscyclometalated iridium(III) complex for selective and switchable Cu²⁺ ion binding in aqueous media. *Tetrahedron Lett.*, **2013**, 54 (8), 779-782. <u>https://doi.org/10.1016/j.tetlet.2012.11.116.</u>
- Ma, D. L.; He, H. Z.; Chan, D. S. H.; Wong, C. Y.; Leung, C. H., A colorimetric and luminescent dual-modal assay for Cu(II) ion detection using an iridium(III) complex. *PLoS One*, 2014, 9 (6). <u>https://doi.org/10.1371/journal.pone.0099930</u>
- Shen, W.; Yan, L.; Tian, W.; Cui, X.; Qi, Z.; Sun, Y., A novel aggregation induced emission active cyclometalated Ir(III) complex as a luminescent probe for detection of copper(II) ion in aqueous solution. *J. Lumin.*, 2016, 177, 299-305. https://doi.org/10.1016/j.jlumin.2016.04.048.
- Yu, T.; Yang, Q.; Zhu, Z.; Zhao, Y.; Liu, X.; Wei, C.; Zhang, H., Synthesis, characterization and photophysical properties of a new Cu²⁺ selective phosphorescent sensor. *J. Organomet. Chem.*, **2017**, *853*, 42-48. https://doi.org/10.1016/j.jorganchem.2017.10.032.
- Yu, T.; Wang, Y.; Zhu, Z.; Li, Y.; Zhao, Y.; Liu, X.; Zhang, H., Two new phosphorescent Ir(III) complexes as efficient selective sensors for the Cu²⁺ ion. *Dyes Pigm.*, **2019**, *161*, 252-260. https://doi.org/10.1016/j.dyepig.2018.09.075.
- Li, Z.; Ge, Z.; Tong, X.; Guo, L.; Huo, J.; Li, D.; Li, H.; Lu, A.; Li, T., Phosphorescent iridium(III) complexes bearing l-alanine ligands: Synthesis, crystal structures, photophysical properties, DFT calculations, and use as chemosensors for Cu²⁺ ion. *Dyes Pigm.*, 2021, 186, 109016. https://doi.org/10.1016/j.dyepig.2020.109016.
- Ge, Z. R.; Tong, X.; Huang, Y. C.; Li, W. H.; Li, H. Y.; Lu, A. D.; Li, T. Y., Highly luminescent dinuclear iridium(III) complexes containing phenanthroline-based neutral ligands as chemosensors for Cu²⁺ ion. *Organometallics*, **2022**, *41* (6), 706-715. https://doi.org/10.1021/acs.organomet.1c00617.
- Zhao, N.; Wu, Y. H.; Luo, J.; Shi, L. X.; Chen, Z. N., Aggregation-induced phosphorescence of iridium(iii) complexes with 2,2'-bipyridine-acylhydrazone and their highly selective recognition to Cu²⁺. *Analyst*, **2013**, *138* (3), 894-900. <u>https://doi.org/10.1039/C2AN36501D</u>.