Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Uniaxial Negative Thermal Expansion Induced by Molecular Rotation in One-Dimensional

Supramolecular Assembly with Associated Peculiar Magnetic Behavior

Kiyonori Takahashi,* Yuki Shirakawa, Hiroki Sakai, Ichiro Hisaki, Shin-ichiro Noro, Tomoyuki Akutagawa, Motohiro Nakano, and Takayoshi Nakamura*

E-mail: ktakahashi@es.hokudai.ac.jp (K. Takahashi), tnaka@es.hokudai.ac.jp (T. Nakamura)

Table of Contents

§1. Crystal data, Crystal Data, Data Collection, and Reduction Parameter.

§2. Crystallographically independent molecules with atom numbering

§3. Input and output file of PASCal Calculation

§4 Differential scanning calorimetry (DSC) for crystal 1

§5 Temperature-dependence of structural change between PD1B•••DB2 and PD1B•••PD2.

§6 Transfer integrals (t) between [Ni(dmit)₂]⁻ anions and their temperature dependence.

§7 Expanded $\chi_m T$ versus T plot of Figure 5.

§1. Crystal data, Crystal Data, Data Collection, and Reduction Parameter.

The Flack parameter analyzed for $P2_1$ was 0.320(11) at 118 K. Relatively large Flack parameter suggests that the inverted domain, where dipole moment of **PD2** are aligned anti-parallel to the first domain, are included in the crystal **1**. It is because crystal structure of **1** can be refined by assuming inversion twin and BASF commands in shelx refinement, where volume ratio of twin domains were 0.680(11):0.320(11) at 118 K.

	1			
<i>Temperature /</i> K	118	135	151	169
Crystal Dimensions / mm ³	0.6×0.6×0.6			
Chemical formula	$C_{92}H_{106}N_4Ni_2O_{24}S_{20}$			
Formula weight	2410.42			
Crystal System	Monoclinic			
Space group	<i>P</i> 2 ₁			
<i>a</i> / Å	13.0944(2)	13.1146(2)	13.1390(2)	13.1620(3)
b/Å	21.8192(3)	21.8149(3)	21.8050(3)	21.7862(3)
<i>c</i> / Å	18.0486(3)	18.0621(3)	18.0856(3)	18.1119(3)
β / deg	94.6070(15)	94.502(2)	94.4155(16)	94.3187(16)
V/Å ³	5139.99(14)	5151.51(14)	5166.08(15)	5178.82(15)
Ζ	2	2	2	2
D_{calc} / g·cm ⁻³	1.557	1.554	1.550	1.546
μ (Mo K α) / cm ⁻¹	0.847	0.845	0.843	0.840
$2\theta_{\rm max}/\deg$	62.5200	61.8940	62.1320	61.586
Reflections measured	77144	78128	77762	80139
Independent reflections	26132	25961	25989	26243
Reflections used	26132	25961	25989	26243
R_1^{a}	0.0350	0.0357	0.0364	0.0374
$R_w(F^2)^a$	0.0803	0.0833	0.0861	0.0888
GOF	1.026	1.034	1.041	1.039
Flack Parameter	0.320(11)	0.334(11)	0.318(11)	0.315(11)
CCDC No.	2163119	2163120	2163121	2163122

Table S1. Crystal Data, Data Collection, and Reduction Parameter for crystal 1.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ and } R_{w} = (\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2})^{1/2}.$

	1				
<i>Temperature /</i> K	177	186	194	202	221
Crystal Dimensions	0.6×0.6×0.6				
/ mm ³					
Chemical formula	$C_{92}H_{106}N_4Ni_2O_{24}S_{20}$				
Formula weight	2410.42				
Crystal System	Monoclinic				
Space group	<i>P</i> 2 ₁				
<i>a /</i> Å	13.19743(18)	13.1936(3)	13.2130(3)	13.2325(3)	13.2688(3)
b/Å	21.7622(2)	21.7511(3)	21.7297(3)	21.7185(3)	21.6763(3)
<i>c</i> / Å	18.1487(2)	18.1553(3)	18.1815(3)	18.1943(3)	18.2309(3)
β / deg	94.1520(11)	94.2038(17)	94.1495(18)	94.039(2)	93.8703(18)
$V/Å^3$	5198.74(11)	5196.10(16)	5206.48(17)	5215.87(16)	5231.59(17)
Ζ	2	2	2	2	2
D_{calc} / g·cm ⁻³	1.540	1.541	1.538	1.535	1.530
μ (Mo K α) / cm ⁻¹	0.837	0.838	0.836	0.834	0.832
$2\theta_{\rm max}/\deg$	62.3520	61.878	60.702	61.526	61.938
Reflections	97567	83480	79833	82353	87510
measured					
Independent	26744	26486	26365	26375	26468
reflections					
Reflections used	26744	26486	26365	26375	26468
R_I^{a}	0.0333	0.0381	0.0390	0.0379	0.0369
$R_w(F^2)^a$	0.0806	0.0900	0.0913	0.0895	0.0851
GOF	1.018	1.042	1.031	1.021	1.027
Flack Parameter	0.356(10)	0.319(11)	0.309(12)	0.323(11)	0.276(11)
CCDC No.	2163123	2163124	2163125	2163126	2163127

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ and } R_{w} = (\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2})^{1/2}.$

	1			
<i>Temperature /</i> K	237	254	272	282
Crystal Dimensions / mm ³	0.6×0.6×0.6			
Chemical formula	$C_{92}H_{106}N_4Ni_2O_{24}S_{20}$			
Formula weight	2410.42			
Crystal System	Monoclinic			
Space group	<i>P</i> 2 ₁			
<i>a /</i> Å	13.3027(3)	13.3375(3)	13.3760(3)	13.3988(3)
b/Å	21.6453(4)	21.6167(4)	21.5994(4)	21.5792(4)
c/Å	18.2686(4)	18.3081(4)	18.3362(4)	18.3596(4)
β / deg	93.655(2)	93.505(2)	93.373(2)	93.338(2)
$V/Å^3$	5249.58(19)	5268.58(19)	5288.40(19)	5299.40(19)
Ζ	2	2	2	2
D_{calc} / g·cm ⁻³	1.525	1.519	1.514	1.511
μ (Mo K α) / cm ⁻¹	0.829	0.826	0.823	0.821
$2\theta_{\rm max}/\deg$	61.4080	61.8740	61.9860	62.5520
Reflections measured	82444	85675	84884	70798
Independent reflections	26609	26960	26919	21627
Reflections used	26609	26960	26919	21627
R_1^{a}	0.0382	0.0383	0.0391	0.0350
$R_w(F^2)^{a}$	0.0903	0.0879	0.1171	0.0839
GOF	0.934	1.018	0.902	1.018
Flack Parameter	0.321(12)	0.337(11)	0.299(12)	0.248(13)
	2163128	2163129	2163130	2163131

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|}$ and $R_{w} = (\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2})^{1/2}$.

Figure S1. Temperature-dependence of β in unit cell.

Figure S2. Temperature dependence of cell parameters normalized at 118 K.

Figure S3. Crystallographically independent molecular structure in the crystal **1** at 118 K with atomic number. (a) Molecular structure of **DB3**. Disordered carbon atoms depicted as yellow and blue colors. (b) molecular structures of **PD2** and **DB2**. (c) Molecular structures of **DB1**, **PD1A**, and **PD1B**. (d) Atom numbering for [Ni(dmit)₂] in the packing with crystallographically independent supramolecular cations.

The length of covalent bonds between the nitrogen atoms in the typical pdazH⁺ cations are longer than those between the nitrogen and carbon atoms. We could not assign nitrogen atoms next to N1A and N1B from the lengths of C-C and C-N bond within **PD1A** and **PD1B** due to the disorder of pdazH⁺. However, if we place the nitrogen atoms other than N2A and N2B, as described in Figure 2b, we could not solve the structure without using restrained commands for bond distance on Shelx refinement. On the other hand, the distance between N3 and N4 atoms in **PD2** was 1.307(5) Å whereas those between N3 or N4 and adjacent carbon atoms were 1.302(6) and 1.276(6) Å, respectively. Therefore, we could safely assign the position of N4

atom of the **PD2** in crystal **1**. The assignment of N4 atom in **PD2** is reasonable because N4 atom in **PD2** contacts C-H bond in **PD1A** and **PD1B** and forms a C-H•••N interaction (Figure 2c, see also Table S3 for the details of C-H•••N4 interactions).

	PD1A•••DB3A		PD1B•••DB3B			
	C15A•••O16A	С15А-Н@•••О16А	C13B•••O16B	C13B•••O16B		
T/K	distance / Å	angle / °	distance / Å	angle / °		
118	3.154	134.16	3.322	153.76		
135	3.126	136.24	3.418	152.91		
151	3.132	134.01	3.409	154.05		
169	3.101	135.80	3.392	155.84		
186	3.089	133.53	3.410	152.97		
194	3.037	135.47	3.445	153.81		
202	3.031	134.52	3.451	154.01		
221	3.031	132.98	3.438	151.70		
237	3.035	132.29	3.364	141.17		
254	3.025	131.19	3.400	142.78		
272	3.084	130.60	3.380	139.94		
282	3.047	128.51	3.337	139.23		

Table S2. Temperature-dependent C•••O distance and C-H•••O angles between PD1A•••DB3A, and PD1B•••DB3B.

Table S3. Temperature-dependent C•••N distances, and C-H•••N angles between PD1A•••PD2, and PD1B•••PD2.

	PD1A•••PD2				
	C13A•••N4	C13A-H@•••N4	C16B•••N4	C16B-H•••N4	
T/K	distance / Å	angle / °	distance / Å	angle / °	
118	3.426	165.05	3.430	120.16	
135	3.415	166.59	3.462	120.05	
151	3.439	166.13	3.463	120.30	
169	3.536	163.54	3.431	120.90	
186	3.532	166.32	3.472	120.34	
194	3.531	166.09	3.487	120.81	
202	3.578	165.91	3.467	122.87	
221	3.588	165.89	3.541	120.80	
237	3.621	165.86	3.557	119.83	
254	3.600	164.95	3.790	118.94	
272	3.640	162.61	3.843	116.02	
282	3.684	164.80	3.719	118.41	

	N-H•••O hydrogen bond								
	PD1A···DB	l	PD1B···DB1		PD2•••DB2				
N N	N1A•••O20	N1A-H1A•••O16	N1B-O24	N1B-H1B•••O24	N3•••O4	N3-H3•••O4			
<i>I /</i> K	distance / Å	angle / °	distance / Å	angle / °	distance / Å	angle / $^{\circ}$			
118	2.806	172.03	2.932	170.89	2.814	170.45			
135	2.804	171.12	2.914	171.28	2.814	169.79			
151	2.831	171.57	2.911	171	2.816	169.85			
169	2.793	168.83	2.912	172.16	2.818	168.57			
186	2.798	169.97	2.912	170.83	2.827	167.07			
194	2.806	169.38	2.92	168.51	2.83	166.68			
202	2.81	167.66	2.916	174.45	2.832	165.48			
221	2.81	168.14	2.922	172.7	2.847	164.54			
237	2.806	168.41	2.919	166.59	2.853	163.28			
254	2.817	169.19	2.983	171.32	2.865	161.69			
272	2.813	169.66	2.955	166.01	2.884	161.11			
282	2.824	168.64	2.907	166.33	2.88	160.99			

Table S3. Temperature dependence of the parameters for N-H•••O hydrogen bonds (N•••O distance and N-H•••O angle) between PD1A•••DB1, PD1B•••DB1, and PD2•••DB2.

Table S5. Temperature dependence of O••• π distances between **DB1•••PD1A** and **DB2•••PD2**.

	DB1•••PD1A							
	Interatomic Distance / Å							
T/K	O18•••C13A	O18•••C14A	O22•••C13A	O22•••C14A				
118	2.999	3.022	2.908	3.057				
135	2.969	3.038	2.941	3.036				
151	2.984	3.038	2.936	3.048				
169	2.979	3.039	2.929	3.058				
186	3.021	3.054	2.902	3.054				
194	3.027	3.016	2.901	3.112				
202	3.026	3.045	2.901	3.083				
221	3.048	3.053	2.894	3.081				
237	3.031	3.019	2.92	3.124				
254	3.052	3.022	2.93	3.132				
272	3.091	3.019	2.91	3.143				
282	3.055	3.028	2.937	3.125				

DB2•••PD2.

Interatomic Distance / Å

T/\mathbf{K}	O6•••C17	06•••N3	O2•••C20	O7•••C20
118	3.192	3.092	3.057	3.192
135	3.202	3.096	3.055	3.194
151	3.19	3.092	3.054	3.197
169	3.202	3.083	3.049	3.195
186	3.212	3.075	3.047	3.19
194	3.22	3.073	3.041	3.188
202	3.224	3.068	3.045	3.187
221	3.237	3.059	3.046	3.174
237	3.241	3.054	3.045	3.177
254	3.247	3.042	3.05	3.17
272	3.25	3.038	3.048	3.176
282	3.259	3.038	3.053	3.17

§3. Input and output file of PASCal Calculation, and indicatrix plots

input	T/K	0	σ _T C	<i>ı</i> / Å	<i>b</i> / Å	<i>c</i> / Å	α / °	eta / °	γ / °
	16	9	5	13.162	21.7862	18.1119	90	94.3187	90
	15	1	5	13.139	21.805	18.0856	90	94.4155	90
	13	5	5	13.1146	21.8149	18.0621	90	94.502	90
	11	8	5	13.0944	21.8192	18.0486	90	94.607	90
output						Direction			
	Axes		α / MK ⁻¹	$\sigma_{\alpha} \ / \ MK^{-1}$	а	b	С		
	X_1		-29.6503	4.1985	0) 1	l	0	
	X_2		38.0421	3.9509	-0.6675	; (0.744	6	
	X_2		142.2858	1.4664	0.8931	. (0.449	9	
	V		151.2583	2.7976					
	% chan	ge ir	length						
	T/K		X_1	X_2	X_2	$X_{1,calc}$	$X_{2,calc}$	$X_{3,calc}$	
	1	118	0	0	0	0.0159	-0.017	9 -0.006	9
]	135	-0.0197	0.0215	0.2221	-0.0345	5 0.046	8 0.23	5
	1	151	-0.0651	0.1047	0.4674	-0.082	2 0.107	7 0.462	6
]	169	-0.1512	0.1865	0.72	-0.1354	0.176	1 0.718	8
	Volume	e							
	T/K		$V/ \mathrm{\AA^3}$	Vlin / Å ³	_				
	1	118	5139.993	5139.4723					
	1	135	5151.509	5152.6892					
]	151	5166.071	5165.1287					
]	169	5178.84	5179.1231					

Table S6. Input and output file of PASCal Calculation for structural data of 1 between 118 and 169 K.

input	T/\mathbf{K}	$\sigma_{ m T}$	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	α/°	β / °	γ/°
	282	5	13.3988	21.5792	18.3596	90	93.338	90
	272	5	13.376	21.5994	18.3362	90	93.373	90
	254	5	13.3375	21.6167	18.3081	90	93.505	90
	237	5	13.3027	21.6453	18.2686	90	93.655	90
	221	5	13.2688	21.6763	18.2309	90	93.8703	90
	202	5	13.2325	21.7185	18.1943	90	94.039	90
	194	5	13.213	21.7297	18.1815	90	94.1495	90
	186	5	13.1936	21.7511	18.1553	90	94.2038	90
					Direction		_	
output	Axes	α / MK ⁻¹	σ., / MK ⁻¹	a	h	С		
	X1	-81 2513	2.7	0	1	0	_	
	X_1 X_2	55.4528	3.149	-0.738	0	0.6749		
	X_2	230.0634	3.3742	0.859	0	0.512		
	V	204.178	1.9955		·			
	% change	in length						-
	T/K	$\frac{\mathcal{L}}{X_1}$	<i>X</i> ₂	X_2	$X_{1 \text{ calc}}$	$X_{2 \text{ calc}}$	$X_{3 \text{ calc}}$	-
	186	0	0	0	-0.0324	0.018	0.028	-
	194	-0.0984	0.1015	0.1967	-0.0974	0.0624	0.2121	
	202	-0.1499	0.1152	0.4153	-0.1624	0.1068	0.3961	
	221	-0.3439	0.2107	0.817	-0.3168	0.2121	0.8333	
	237	-0.4864	0.2644	1.2529	-0.4468	0.3008	1.2014	
	254	-0.6179	0.3778	1.6376	-0.5849	0.3951	1.5925	
	272	-0.6974	0.4775	1.9988	-0.7312	0.4949	2.0066	
	282	-0.7903	0.5935	2.1883	-0.8124	0.5504	2.2367	
	Volume			_				-
	T/K	$V/\text{\AA}^3$	Vlin / Å ³					
	186	5196.1057	5196.7608					
	194	5206.4888	5205.2482					
	202	5215.8741	5213.7356					
	221	5231.5855	5233.8933					
	237	5249.5783	5250.8682					
	254	5268.5849	5268.904					
	272	5288.3999	5288.0008					
	282	5299.4039	5298.6101	_				

Table S7. Input and output file of PASCal Calculation for structural data of 1 between 186 and 282 K.

Figure S4. Indicatrix plots for structural data of 1 between (a) 118 and 169 K and (b) 186 and 282 K.

PASCal Indicatrix Plotter was used to plot the data. The software was obtained from the web site: https://cliffe.nottingham.ac.uk/programs/

Figure S5. Differential scanning calorimetry from 150 to 290 K. Red and blue allows indicate the heating and cooling processes, respectively.

Figure S6. Schematic of selected parameters in supramolecular cation structure. The atoms are displayed using the thermal ellipsoid model. (a) Schematic of the interaction (purple) between C16B in PD1B and N4 in PD2 ($d_{\text{C-N}}$). (b) Temperature dependences of Ψ_{PD1B} (Green), and $d_{\text{C-N}}$ (purple). The dashed line corresponds to the phase transition temperature of 183 K.

§6 Transfer integrals (t) between [Ni(dmit)₂]⁻ anions and their temperature dependence.

Figure S7. Transfer integrals (*t*) between $[Ni(dmit)_2]^-$ anions and their temperature dependence. (a) Arrangement of $[Ni(dmit)_2]^-$ and corresponding *t* (t_{intra} , t_2 , t_3 , and t_4), where t_{intra} represents *t* in intradimer. (b) Temperature-dependent *t*. Each *t* corresponds to those in (a).

§6 Expanded $\chi_m T$ versus T plot of Figure 5.

Figure S8. Expanded $\chi_m T$ versus *T* plot of Figure 5 with the left axis expanded from 0.65 to 1.0 cm³ K mol⁻¹. Black and blue lines represent the singlet-triplet (S-T) thermal excitation models explained in the main text.

Singlet-triplet (S-T) thermal excitation model is described as follows ^{S1}:

$$\chi_m = \frac{2N_A {\mu_B}^2 g^2}{k_B T} \frac{1}{[3 + exp^{m}(-2J/k_B T)]}$$

where N_A , μ_B , g, and k_B are Avogadro number, Bohr magneton, Landé g-factor, and Boltzmann constant, respectively. In the modified model, $J/k_B = c_0 T + c_1$ are used, where c_0 and c_1 are constant.

References

[S1] B. Bleaney, K. D. Bowers, Proc. R. Soc. Lond. A, 1952, 214, 451-465.