Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

NIR-Sensing Ambipolar Organic Phototransistors with Conjugated Terpolymer Layers Based on Diketopyrrolopyrrole-Benzothiadiazole-Naphthalenediimide Comonomer Units

Yeonhwa Cho¹, Taehoon Kim¹, Woongki Lee¹, Hwajeong Kim^{1,2}, Youngkyoo Kim^{1*}

- ¹ Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- ² Priority Research Center, Research Institute of Environmental Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea

*Correspondence: Prof. Y. Kim

Email) ykimm@knu.ac.kr Tel) +82-(0)53-950-5616

Authors	Polymer Structure	Device Performances	Refs. (Year)
M. Li, et al.	$\begin{array}{c} \begin{array}{c} C_{12}H_{25} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	[Wavelength] 500, 1200 nm [Voltage Window] ±80V [OPTR Application] YES	SR-1 (2015)
P. Wang, et al.	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$	[Wavelength] 900 nm [Voltage Window] ±80V [OPTR Application] NO	SR-2 (2015)
G. Zhang, et al.	$\begin{array}{c} & C_{8}H_{17} \\ & C_{10}H_{21} \\ & P3 (Copolymer) \end{array}$	[Wavelength] 800 nm [Voltage Window] ±80V [OPTR Application] YES	SR-3 (2016)
Y. Cho, et al.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & \\$	[Wavelength] 810 nm, 1100 nm (edge) [Voltage Window] ±10V [OPTR Application] YES	This work (2022)

 Table S1. Summary of ambipolar-type NIR-absorbing conjugated polymers reported to date.

References for Table S1

- SR-1. M. Li, C. An, T. Marszalek, X. Guo, Y. Long, H. Yin, C. Gu, M. Baumgarten, W. Pisula, K. Mullen, Phenanthrene condensed thiadiazoloquinoxaline donor-acceptor polymer for phototransistor applications, Electrochem. Commun. 74 (2017) 33-37.
- SR-2. P. Wang, H. Li, C. Gu, H. Dong, Z. Xu, H. Fu, Air-stable ambipolar organic field-effect transistors based on naphthalenediimide– diketopyrrolopyrrole copolymers, RSC Adv. 5 (2015) 19520.
- SR-3. G. Zhang, J. Guo, J. Zhang, W. Li, X. Wang, H. Lu, L. Qiu, Benzodithiophenedione and diketopyrrolopyrrole based conjugated copolymers for organic thin-film transistors by structure modulation, Dyes Pigm. 126 (2016) 20-28.

Table S2. Summary of device parameters under illumination with NIR light ($\lambda = 810$ nm) for the OPTRs with the PDPP-8OBT-NDI sensing channel layers. Note that data were taken from the transfer curves in Figure 4a ($V_G = V_D = \pm 10$ V), respectively.

P _{IN} (µW/cm²)	<i>t</i> (nm)	Channel	$\Delta V_{TH}(V)$	S _p (%)	R _c (mAW ⁻¹)	DCR
56	40	р	-3.24	78.04	0.33	1.10
		n	3.38	36.02	0.16	
	80	р	-2.25	169.60	1.14	1.21
		n	2.81	165.57	0.98	
169	40	р	-2.87	114.19	0.16	1.11
		n	2.90	62.99	0.10	
	80	р	-2.03	249.01	0.48	1.22
		n	2.43	206.55	0.46	
394	40	р	-2.33	195.85	0.11	1 1 2
		n	2.37	124.26	0.08	1.12
	80	р	-1.98	335.29	0.29	1.23
		n	2.13	294.26	0.27	
563	40	р	-2.17	245.38	0.10	1.14
		n	2.34	163.48	0.75	
	80	р	-1.25	413.72	0.25	1.07
		n	1.78	373.36	0.24	1.27

Table S3. Summary of device parameters under illumination with NIR light ($\lambda = 905$ nm) for the OPTRs with the PDPP-8OBT-NDI sensing channel layers. Note that data were taken from the transfer curves in Figure 4a ($V_G = V_D = \pm 10$ V), respectively.

P _{IN} (µW/cm²)	<i>t</i> (nm)	Channel	$\Delta V_{TH}(V)$	S _p (%)	R _c (mAW ⁻¹)	DCR
40	40	р	-3.26	261.78	1.37	1.10
		n	3.81	180.70	1.03	
	80	р	-2.54	203.92	1.63	1.21
		n	2.59	190.98	1.45	
136 —	40	р	-2.84	303.17	0.52	1.14
		n	3.37	222.30	0.42	
	80	р	-2.51	360.78	0.92	1.24
		n	2.55	325.40	0.85	
319	40	р	-2.31	419.41	0.31	1 16
		n	2.37	311.76	0.25	1.10
	80	р	-2.49	495.09	0.58	1.25
		n	2.54	481.96	0.50	
456 —	40	р	-2.28	522.48	0.27	1.18
		n	2.32	415.93	0.24	
	80	р	-2.38	665.57	0.56	1.27
		n	2.47	622.54	0.44	

Figure S1. ¹H-NMR (700 MHz) spectra for the PDPP-80BT-NDI polymer (solvent: CDCl₃) synthesized in this work. A detailed interpretation of the major peaks is given in the experimental section.

Figure S2. ¹³C-NMR (700 MHz) spectra for the PDPP-80BT-NDI polymer (solvent: CDCl₃) synthesized in this work. A detailed interpretation of the major peaks is given in the experimental section.

Figure S3. TGA (a) and DSC (b) thermograms (nitrogen environment) for the PDPP-8OBT-NDI polymer. The TGA measurement was carried out by heating at a ramp rate of 10 °C/min, while the DSC measurement was performed by scanning at a heating rate of 5 °C/min (second run).

Figure S4. Optical absorption spectra of PDPP-80BT, PDPP-NDI, and PDPP-80BT-NDI polymers: (a) solutions (solvent: toluene), (b) films. On the basis of optical absorption spectra, the composition ratio of 80BT to NDI comonomer in the PDPP-80BT-NDI chains was calculated to 80BT:NDI = 0.54:0.46 (from solutions) and 0.62:0.38 (from films).

Figure S5. Tauc plot of the PDPP-8OBT-NDI film (original data: from the optical absorption spectrum in Figure 1b). A and **E**_P denote absorbance and photon energy, respectively.

Figure S6. AFM (height-mode, 2 μ m x 2 μ m) images of the PDPP-8OBT-NDI films: (a) t = 40 nm, (b) t = 80 nm. Note that the root-mean-square (rms) roughness (Rg) from the AFM images was measured in the range of ca. 1.0 ~ 1.3 nm, which corresponds to ca. 1.6 ~ 2.5% compared to the thickness of films.