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Experimental

X-ray Diffraction Measurements. X-ray diffraction (XRD) measurements were
carried out with a D8 ADVANCE (Bruker) using Ni-filtered Cu Ka line radiation (4 =
1.5418 A). The accelerating voltage was set at 40 kV with 20 mA current, and profiles

were collected in the 5° < 26 < 40° range with a step size of 0.03°.

Small-angle X-ray scattering (SAXS) measurements. Small-angle X-ray scattering
(SAXS) measurements were carried out with beam-line BL6A, Photon Factory, KEK,
Japan (Proposal No. 21G524 and 22G027).

. The scattering vector, g, is defined as

g="sing (1),

where 20 and A are the scattering angle and wavelength (1.5 A), respectively. The camera
lengths was 2410 mm. A PILATUS 2M detector (Dectris AG, Baden, Switzerland)
detector was used with a ¢ range of 0.07 to 2.0 nm!. Data processing, which included
controlling the contrast of the 2D-patterns and the preparation of a 1D-profile from the
obtained 2D-patterns, was performed using the FIT-2D software (Ver. 12.077, Andy
Hammersley/ESRF, Grenoble, France).
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Synthesis

Scheme S1. Synthetic Scheme of R-OPh-B-BODIPY.
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Synthesis of R-0Ph-B-BODIPY. BODIPY-ref (100 mg, 0.38 mmol), AICl3 (76 mg, 0.57

mmol) were dissolved in CH>Cl> (10 ml) and refluxed for 30 min. After cooling down to
room temperature, enantiopure R-Br-BINOL (337 mg, 0.76 mmol) in acetonitrile (5 ml)
was added dropwise and stirred at room temperature for 6 h. Next, the solvent was washed
with saturated NaCl aqueous solution, dried over anhydrous MgSO4 and evaporated.
Finally, the crude was purified by chromatography on silica gel eluting with
hexane/CH>Cl; (1/1, v/v) and enantiopure R-OPh-B-BODIPY (yield: 120 mg, 51%) was
obtained. S-0Ph-B-BODIPY was synthesized by changing from enantiopure R-Br-BINOL
to enantiopure S-Br-BINOL. 'H NMR (CDCls) d: 7.96 (2H, s), 7.65 (2H, d, /= 10.0 Hz),
7.21 (2H, d, J=8.6 Hz), 7.14 (2H, d, J = 8.6 Hz), 7.02 (2H, d, J = 8.1 Hz), 5.86 (2H, s),
2.67 (3H, s), 2.43 (6H, s), 1.67 (6H, s). 3C-NMR (CDCIls) J: 154.87 (s), 154.36 (s),
141.19 (s), 140.80 (s), 133.01 (s), 132.06 (s), 130.94 (s), 129.82 (s), 128.62 (s), 128.54
(s), 128.32 (s), 124.94 (s), 122.18 (s), 120.94 (s), 117.08 (s), 17.66 (s), 16.95 (s), 15.96
(s). High resolution MALDI-TOF MS: m/z calcd, 664.0532; found, 664.0515 [M].
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Scheme S2. Synthetic Scheme of R-1Ph-BODIPY.
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Synthesis of R-1Ph-B-BODIPY. 1Ph-BODIPY (100 mg, 0.30 mmol), AICI3 (59 mg, 0.44

mmol) were dissolved in CH>Cl> (10 ml) and refluxed for 30 min. After cooling down to

room temperature, enantiopure R-Br-BINOL (261 mg, 0.59 mmol) in acetonitrile (5 ml)
was added dropwise and stirred at room temperature for 6 h. Next, the solvent was washed
with saturated NaCl aqueous solution, dried over anhydrous MgSO4 and evaporated.
Finally, the crude was purified by chromatography on silica gel eluting with
hexane/CH>Cl; (1/1, v/v) and enantiopure R-1Ph-B-BODIPY (yield: 115 mg, 55%) was
obtained. S-1Ph-B-BODIPY was synthesized by changing from enantiopure R-Br-BINOL
to enantiopure S-Br-BINOL. '"H NMR (CDCl3) 6: 7.96 (2H, s), 7.67 (1H, d, J = 8.8 Hz),
7.64 (1H, d, J= 8.8 Hz), 7.35-7.26 (3H, m), 7.23 (3H, d, J = 8.8 Hz), 7.21-7.17 (2H, m),
7.10 (1H, d, J = 8.8 Hz), 7.04-6.99 (4H, m), 5.85 (1H, s), 2.74 (3H, s), 2.45 (3H, ), 2.33
(3H, s), 1.71 (3H, s), 1.64 (3H, s). 3C NMR (CDCls) d: 154.82 (s), 154.75 (s), 152.51 (s),
141.38 (s), 140.87 (s), 137.08 (s), 133.91 (s), 133.42 (s), 132.82 (s), 132.10 (s), 132.01
(s), 131.07 (s), 130.80 (s), 130.35 (s), 129.84 (s), 129.69 (s), 129.49 (s), 128.65 (s), 128.57
(s), 128.54 (s), 128.50 (s), 128.40 (s), 128.16 (s), 127.80 (s), 127.70 (s), 126.91 (s), 125.05
(s), 124.72 (s), 122.21 (s), 121.31 (s), 120.48 (s), 117.16 (s), 117.08 (s), 17.71 (s), 17.47
(s), 15.79 (s), 15.73 (s), 14.94 (s). High resolution MALDI-TOF MS: m/z calcd,
740.0845; found, 740.0842 [M].
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Scheme S3. Synthetic Scheme of R-2Ph-B-BODIPY
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Synthesis of R-2Ph-B-BODIPY. 2Ph-BODIPY (100 mg, 0.24 mmol), AICl3 (50 mg, 0.37
mmol) were dissolved in CH>Cl> (10 ml) and refluxed for 30 min. After cooling down to
room temperature, enantiopure R-Br-BINOL (250 mg, 0.56 mmol) in acetonitrile (5 ml)
was added dropwise and stirred at room temperature for 6 h. Next, the solvent was washed
with saturated NaCl aqueous solution, dried over anhydrous MgSO4 and evaporated.
Finally, the crude was purified by chromatography on silica gel eluting with
hexane/CH>Cl; (1/1, v/v) and enantiopure R-2Ph-B-BODIPY (yield: 127 mg, 42%) was
obtained. S-2Ph-B-BODIPY was synthesized by changing from enantiopure R-Br-BINOL
to enantiopure S-Br-BINOL.'H NMR (CDCl;3) 8: 7.96 (2H, s), 7.66 (2H, d, J = 8.6 Hz),
7.33-7.31 (4H, m), 7.27-7.24 (3H, m), 7.19-7.17 (3H, m), 7.01 (2H, d, J = 9.1 Hz), 6.96
(4H, d, J= 7.2 Hz), 2.81 (3H, s), 2.35 (6H, s), 1.68 (6H, s). *C NMR (CDCls) &: 154.66
(s), 153.05 (s), 141.60 (s), 137.24 (s), 133.99 (s), 133.90 (s), 133.30 (s), 132.08 (s), 130.98
(s), 130.36 (s), 129.74 (s), 128.62 (s), 128.58 (s), 128.26 (s), 128.20 (s), 126.97 (5s), 124.86
(s), 120.92 (s), 117.18 (s), 17.94 (s), 15.80 (s), 14.78 (s). High resolution MALDI-TOF
MS: m/z calcd, 816.1158; found, 816.1168 [M].
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Fig. S1 '"H NMR spectrum of R-OPh-B-BODIPY.
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Fig. S2 *C NMR spectrum of R-OPh-B-BODIPY.
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Fig. S3 High resolution MALDI-TOF MS spectrum of R-OPh-B-BODIPY.
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Fig. S4 'H NMR spectrum of R-1Ph-B-BODIPY.
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Fig. S5 *C NMR spectrum of R-1Ph-B-BODIPY.
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Fig. S6 High resolution MALDI-TOF MS spectrum of R-1Ph-B-BODIPY.
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Fig. S7 'H NMR spectrum of R-2Ph-B-BODIPY.
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Fig. S8 °C NMR spectrum of R-2Ph-B-BODIPY.

S13



816.1168

10” Intensity

I I I I

750 800 850 900 950

Mass, m/z
Fig. S9 High resolution MALDI-TOF MS spectrum of R-2Ph-B-BODIPY.
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Fig. S10 (A) Concentration-dependent absorption spectra of (OPh-B-BODIPY)n. (a) 3.0
puM, (b) 30 uM, and (c) 300 uM in HoO/THF = 99/1 (v/v). The insertion figure indicated
the normalized spectra for comparison. (B) Concentration-dependent fluorescence
spectra of (OPh-B-BODIPY )u, (a) 3.0 uM, (b) 30 uM, and (c) 300 uM. Aex. =470 nm. We
can see a broad fluorescence spectrum derived from molecular aggregation under the
experimental condition of 30 uM in HoO/THF = 99/1 (v/v).
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Fig. S11 (A) Absorption spectra of (OPh-B-BODIPY)n, in a mixed solvent of H>O and
THF with different volume ratios. (a) H2O/THF = 99/1 (v/v), (b) HoO/THF = 70/30 (v/v),
and (c) HoO/THF = 50/50 (v/v). The final concentrations of 0Ph-B-BODIPY were fixed
as constant (= 30 uM). (B) Absorption spectra of (OPh-B-BODIPY),, in a mixture solvent
of THF and water with different ratios. (a) H2O/THF = 99/1 (v/v), (b) HoO/THF = 70/30
(v/v), and (c) HoO/THF = 50/50 (v/v). The final concentration was fixed as constant (=

30 uM). Aex. = 470 nm.
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Fig. S12 TEM image of (0Ph-B-BODIPY)n in HoO/THF = 70/30 (v/v). The final
concentration of 0Ph-B-BODIPY was 30 uM in H,O/THF.
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Fig. S13 Diameter-distributions of (0Ph-B-BODIPY),, in H,O/THF = 70/30 (v/v)
analysed by TEM images. The final concentration of 0Ph-B-BODIPY is 30 uM in
H>O/THF.
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Fig. S14 Size-distributions of (OPh-B-BODIPY), in HoO/THF = 50/50 (v/v) (final
concentration of 0Ph-B-BODIPY: [0Ph-B-BODIPY] = 30 uM in H,O/THF) by dynamic
light scattering (DLS) measurements.

To discuss the solvent ratio-dependent structural changes, the following two different
(OPh-B-BODIPY)n systems with volume ratios such as HoO/THF = 70/30 and 50/50 were
prepared by maintaining the final concentrations (30 pM) in mixed solvents. Absorption
and fluorescence spectra and TEM images of these systems prepared in H2O/THF = 70/30
and 50/50 (v/v) are totally different from those prepared in H O/THF = 99/1 (v/v) (Figs.
S11-S14 in ESI). Isotropic spherical assemblies prepared in HoO/THF = 70/30 (v/v) (Figs.
S12-S13) are in sharp contrast with the anisotropic fibrous assemblies in H;O/THF = 99/1
(v/v) (Fig. 2A in the text). Furthermore, absorption and fluorescence spectra (Fig. S11)
and dynamic light scattering (DLS) result (Fig. S14) in H2O/THF = 50/50 (v/v)
demonstrated a monomer-like behavior, but not aggregate formations (No specific
aggregate structures were observed by TEM measurements). Thus, such fibrous
assemblies could be fabricated only under the excess volume condition of H>O relative to
THF such as 30 uM 0Ph-B-BODIPY in HoO/THF = 99/1 (v/v).
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Fig. S15 The width and diameter-distributions of B-BODIPY assemblies. (A) The width-
distribution of (OPh-B-BODIPY )y, prepared in HoO/THF = 99/1 (v/v) ([OPh-B-BODIPY]
=30 uM), (B) the diameter-distribution of (1Ph-B-BODIPY ), prepared in H;O/THF =
99/1 (v/v) ([1Ph-B-BODIPY] = 30 uM), and (C) the diameter-distribution of (2Ph-B-
BODIPY)m prepared in HO/THF = 99/1 (v/v) ([2Ph-B-BODIPY] = 30 uM).
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Fig. S16 Size-distributions of (A) (1Ph-B-BODIPY)n, prepared in HoO/THF = 99/1 (v/v)
([1Ph-B-BODIPY] = 30 uM) and (B) (2Ph-B-BODIPY)n prepared in HoO/THF = 99/1
(v/v) ([2Ph-B-BODIPY] = 30 uM) by dynamic light scattering (DLS) measurements.
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Fig. S17 Single-crystal structures of m-stacking between two neighboring R-1Ph-B-
BODIPY. Black line: m-stacking distance: 3.60 A.
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Fig. S18 Single-crystal structures of m-stacking between two neighboring R-2Ph-B-
BODIPY. Black line: n-stacking distance: 3.68 A.
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Table S1. Single crystal structures and crystallographic data of R-OPh-B-BODIPY.

R-OPh-B-BODIPY

Compound
Formula C34H27BBraN20O2
Formula Weight 666.22
Crystal System Orthorhombic
Space Group P212121 (#19)
a, A 6.8301(16)
b, A 21.461(5)
c, A 22.842(5)
a, degree 90.0000
p, degree 90.018(6)
7, degree 90.0000
V, A3 3348.2(14)
4 4
Deale, g cm™ 1.322
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Table S2. Single crystal structures and crystallographic data of R-1Ph-B-BODIPY.

Compound R-1Ph-B-BODIPY
Formula C46H45BBrpN>Oo
Formula Weight 828.49
Crystal System Orthorhombic
Space Group P212121 (#19)
a, A 6.7759(3)
b, A 22.5581(11)
c, A 26.3420(13)
a, degree 90.0000
p, degree 90.0000
7, degree 90.0000
V, A3 4026.4(3)
4 4
Deale, g cm™ 1.367
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Table S3. Single crystal structures and crystallographic data of R-2Ph-B-BODIPY.

Compound R-2Ph-B-BODIPY
Formula C46H35BBroN>Op
Formula Weight 818.41
Crystal System Monoclinic
Space Group P21 (#4)
a, A 14.0582(3)
b, A 7.39498(13)
c, A 17.5218(3)
a, degree 90.0000
p, degree 93.311(7)
7, degree 90.0000
V, A3 1818.53(6)
Z 2
Deate, g cm™ 1.495
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Fig. S19 XRD patterns of (a) (0Ph-B-BODIPY ), prepared in HO/THF = 99/1 (v/v) and
(b) a simulated pattern from the crystal structure of OPh-B-BODIPY.
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Fig. S20 Small-angle X-ray scattering (SAXS) profile of (OPh-B-BODIPY )m prepared in
H>O/THF = 99/1 (v/v).

In SAXS profile of (OPh-B-BODIPY)n, we fitted the profile with eq. (2), which

is based on the cross-section plot, a method for analyzing fibrous aggregates.

1() = ag™*" + be ="M @)

Here, I(q) is scattering intensity, a, and b are constant, ¢ is scattering angle, and R; is
radius of gyration for rods. The profile in the low-g region is described by I(g) ~ g>7. The
scattering profile originates from the smooth interface owing to the surface dimension of
2.3. This interface is believed to be derived from micron-scaled particles. Eq. (2) could
be fitted to the profile, and SAXS data also suggested fibrous assemblies of (OPh-B-
BODIPY)n. Consequently, R; was calculated to be 20.0 nm, which is comparable to the
width value in TEM image (Fig.2A and Fig. S11A in ESIY).
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Fig. S21 (A) Absorption spectra of (a) (1Ph-B-BODIPY)m prepared in H2O/THF = 99/1
(v/v). [1Ph-B-BODIPY] = 30 uM and (b) 1Ph-B-BODIPY in THF. (B) CD spectra of (a)
(1Ph-B-BODIPY)n prepared in HoO/THF = 99/1 (v/v). [1Ph-B-BODIPY] = 30 uM and
(b) 1Ph-B-BODIPY in THF. Solid and dotted lines correspond to S and R forms,
respectively. (C) Dissymmetry factor (gabs) profiles of (a) (1Ph-B-BODIPY ) prepared in
H,O/THF =99/1 (v/v). [IPh-B-BODIPY] =30 uM and (b) 1Ph-B-BODIPY in THF. Solid
and dotted lines correspond to S and R forms, respectively.
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Fig. S22 (A) Absorption spectra of (a) (2Ph-B-BODIPY)m prepared in H2O/THF = 99/1
(v/v). [2Ph-B-BODIPY] = 30 uM and (b) 2Ph-B-BODIPY in THF. (B) CD spectra of (a)
(2Ph-B-BODIPY)n prepared in HoO/THF = 99/1 (v/v). [1Ph-B-BODIPY] = 30 uM and
(b) 2Ph-B-BODIPY in THF. Solid and dotted lines correspond to S and R forms,
respectively. (C) Dissymmetry factor (gabs) profiles of (a) (2Ph-B-BODIPY ) prepared in
H,O/THF =99/1 (v/v). [2Ph-B-BODIPY] = 30 uM and (b) 2Ph-B-BODIPY in THF. Solid
and dotted lines correspond to S and R forms, respectively.
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Fig. S23 Fluorescence spectra of (a) 2Ph-B-BODIPY (monomer: black line) in THF and
(b) (2Ph-B-BODIPY )i, (red line) prepared in H2O/THF = 99/1 (v/v). dex: 470 nm.
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Fig. S24 Dissymmetry factor (gium) profiles corresponding to CPL spectra of (A) OPh-B-
BODIPY (monomer) in THF, Zex: 350 nm. (B) (OPh-B-BODIPY), prepared in HoO/THF
=99/1 (V/v), Zex: 350 nm. (C) (1Ph-B-BODIPY)m prepared in HyO/THF = 99/1 (v/v), Aex:

350 nm. Solid and dotted lines correspond to S and R forms, respectively.
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Fig. S25 CPL spectra of (OPh-B-BODIPY )y, prepared in HoO/THF = 70/30 (v/v). [0Ph-
B-BODIPY] = 30 uM, Zex: 350 nm. Solid and dotted lines correspond to S and R forms,

respectively.
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Fig. S26 Dissymmetry factor (gum) profiles corresponding to CPL spectra of (0Ph-B-

BODIPY)nm prepared in HoO/THF = 70/30 (v/v). [0Ph-B-BODIPY] =30 uM, Aex: 350 nm.
Solid and dotted lines correspond to S and R forms, respectively.

(OPh-B-BODIPY )m prepared in HoO/THF = 70/30 (v/v) demonstrated broader CPL
spectra relative to the monomers, whereas the corresponding gium value slightly decreased
as compared to that in HoO/THF = 99/1 (v/v) (Figs.S25 and S26). The plausible reason is
attributable due to the relative weak interaction between nearby OPh-B-BODIPY
molecules. In contrast, in the case of (0Ph-B-BODIPY)n, prepared in HO/THF = 50/50
(v/v), unfortunately we could not observe appropriate CPL spectra despite the repeated
measurements due to the unstable suspension of (0Ph-B-BODIPY ), in HO/THF. This
strongly suggested that the excess volume condition of H,O (poor solvent) relative to
THF (good solvent) (e.g., HO/THF = 99/1 (v/v)) play an important role for preparation
of stable aggregate structures.
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